Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad J. Hossain is active.

Publication


Featured researches published by Mohammad J. Hossain.


PLOS ONE | 2013

Implication of Lateral Genetic Transfer in the Emergence of Aeromonas hydrophila Isolates of Epidemic Outbreaks in Channel Catfish

Mohammad J. Hossain; Geoffrey C. Waldbieser; Dawei Sun; Nancy K. Capps; William B. Hemstreet; Kristen Carlisle; Matt J. Griffin; Lester H. Khoo; Andrew E. Goodwin; Tad S. Sonstegard; Steven G. Schroeder; Karl Hayden; Joseph C. Newton; Jeffery S. Terhune; Mark R. Liles

To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A. hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands, metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A. hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11 sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted in the emergence of recent epidemic A. hydrophila strains.


Mbio | 2014

An Asian Origin of Virulent Aeromonas hydrophila Responsible for Disease Epidemics in United States-Farmed Catfish

Mohammad J. Hossain; Dawei Sun; Donald McGarey; Shannon Wrenn; Laura M. Alexander; Maria Elena Martino; Ye Xing; Jeffery S. Terhune; Mark R. Liles

ABSTRACT Since 2009, catfish farming in the southeastern United States has been severely impacted by a highly virulent and clonal population of Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in catfish. The possible origin of this newly emerged highly virulent A. hydrophila strain is unknown. In this study, we show using whole-genome sequencing and comparative genomics that A. hydrophila isolates from diseased grass carp in China and catfish in the United States have highly similar genomes. Our phylogenomic analyses suggest that U.S. catfish isolates emerged from A. hydrophila populations of Asian origin. Furthermore, we identified an A. hydrophila strain isolated in 2004 from a diseased catfish in Mississippi, prior to the onset of the major epidemic outbreaks in Alabama starting in 2009, with genomic characteristics that are intermediate between those of the Asian and Alabama fish isolates. Investigation of A. hydrophila strain virulence demonstrated that the isolate from the U.S. catfish epidemic is significantly more virulent to both channel catfish and grass carp than is the Chinese carp isolate. This study implicates the importation of fish or fishery products into the United States as the source of highly virulent A. hydrophila that has caused severe epidemic outbreaks in United States-farmed catfish and further demonstrates the potential for invasive animal species to disseminate bacterial pathogens worldwide. IMPORTANCE Catfish aquaculture farming in the southeastern United States has been severely affected by the emergence of virulent Aeromonas hydrophila responsible for epidemic disease outbreaks, resulting in the death of over 10 million pounds of catfish. Because the origin of this newly emerged A. hydrophila strain is unknown, this study used a comparative genomics approach to conduct a phylogenomic analysis of A. hydrophila isolates obtained from the United States and Asia. Our results suggest that the virulent isolates from United States-farmed catfish have a recent common ancestor with A. hydrophila isolates from diseased Asian carp. We have also observed that an Asian carp isolate, like recent U.S. catfish isolates, is virulent in catfish. The results from this study suggest that the highly virulent U.S. epidemic isolates emerged from an Asian source and provide another example of the threat that invasive species pose in the dissemination of bacterial pathogens. Catfish aquaculture farming in the southeastern United States has been severely affected by the emergence of virulent Aeromonas hydrophila responsible for epidemic disease outbreaks, resulting in the death of over 10 million pounds of catfish. Because the origin of this newly emerged A. hydrophila strain is unknown, this study used a comparative genomics approach to conduct a phylogenomic analysis of A. hydrophila isolates obtained from the United States and Asia. Our results suggest that the virulent isolates from United States-farmed catfish have a recent common ancestor with A. hydrophila isolates from diseased Asian carp. We have also observed that an Asian carp isolate, like recent U.S. catfish isolates, is virulent in catfish. The results from this study suggest that the highly virulent U.S. epidemic isolates emerged from an Asian source and provide another example of the threat that invasive species pose in the dissemination of bacterial pathogens.


PLOS ONE | 2015

Strategies to Avoid Wrongly Labelled Genomes Using as Example the Detected Wrong Taxonomic Affiliation for Aeromonas Genomes in the GenBank Database.

Roxana Beaz-Hidalgo; Mohammad J. Hossain; Mark R. Liles; Maria-Jose Figueras

Around 27,000 prokaryote genomes are presently deposited in the Genome database of GenBank at the National Center for Biotechnology Information (NCBI) and this number is exponentially growing. However, it is not known how many of these genomes correspond correctly to their designated taxon. The taxonomic affiliation of 44 Aeromonas genomes (only five of these are type strains) deposited at the NCBI was determined by a multilocus phylogenetic analysis (MLPA) and by pairwise average nucleotide identity (ANI). Discordant results in relation to taxa assignation were found for 14 (35.9%) of the 39 non-type strain genomes on the basis of both the MLPA and ANI results. Data presented in this study also demonstrated that if the genome of the type strain is not available, a genome of the same species correctly identified can be used as a reference for ANI calculations. Of the three ANI calculating tools compared (ANI calculator, EzGenome and JSpecies), EzGenome and JSpecies provided very similar results. However, the ANI calculator provided higher intra- and inter-species values than the other two tools (differences within the ranges 0.06–0.82% and 0.92–3.38%, respectively). Nevertheless each of these tools produced the same species classification for the studied Aeromonas genomes. To avoid possible misinterpretations with the ANI calculator, particularly when values are at the borderline of the 95% cutoff, one of the other calculation tools (EzGenome or JSpecies) should be used in combination. It is recommended that once a genome sequence is obtained the correct taxonomic affiliation is verified using ANI or a MLPA before it is submitted to the NCBI and that researchers should amend the existing taxonomic errors present in databases.


Genome Announcements | 2014

Taxonomic Affiliation of New Genomes Should Be Verified Using Average Nucleotide Identity and Multilocus Phylogenetic Analysis

Maria José Figueras; Roxana Beaz-Hidalgo; Mohammad J. Hossain; Mark R. Liles

ABSTRACT The average nucleotide identity (ANI) determines if two genomes belong to the same species. Using ANI, we detected mislabeled genomes and recommend verifying with ANI and multilocus phylogenetic analysis the species affiliations of the announced genomes. The slightly different results obtained with different ANI calculation software can potentially mislead taxonomic inferences.


Frontiers in Microbiology | 2016

Classification of a Hypervirulent Aeromonas hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes

Cody R. Rasmussen-Ivey; Mohammad J. Hossain; Sara E. Odom; Jeffery S. Terhune; William G. Hemstreet; Craig A. Shoemaker; Dunhua Zhang; De-Hai Xu; Matt J. Griffin; Yong-Jie Liu; Maria José Figueras; Scott R. Santos; Joseph C. Newton; Mark R. Liles

Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the Peoples Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to Alabama and Mississippi vAh isolates. Like other Asian vAh isolates, the ZC1 lineage contains all core genes for a complete type VI secretion system (T6SS). In contrast, more virulent US isolates retain only remnants of the T6SS (clpB, hcp, vgrG, and vasH) which may have functional implications. Collectively, these results characterize a hypervirulent A. hydrophila pathotype that affects farmed fish on multiple continents.


Frontiers in Plant Science | 2015

Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum

Mohammad J. Hossain; Chao Ran; Ke Liu; Choong-Min Ryu; Cody R. Rasmussen-Ivey; Malachi A. Williams; Mohammad K. Hassan; Soo-Keun Choi; Haeyoung Jeong; Molli M. Newman; Joseph W. Kloepper; Mark R. Liles

To understand the growth-promoting and disease-inhibiting activities of plant growth-promoting rhizobacteria (PGPR) strains, the genomes of 12 Bacillus subtilis group strains with PGPR activity were sequenced and analyzed. These B. subtilis strains exhibited high genomic diversity, whereas the genomes of B. amyloliquefaciens strains (a member of the B. subtilis group) are highly conserved. A pairwise BLASTp matrix revealed that gene family similarity among Bacillus genomes ranges from 32 to 90%, with 2839 genes within the core genome of B. amyloliquefaciens subsp. plantarum. Comparative genomic analyses of B. amyloliquefaciens strains identified genes that are linked with biological control and colonization of roots and/or leaves, including 73 genes uniquely associated with subsp. plantarum strains that have predicted functions related to signaling, transportation, secondary metabolite production, and carbon source utilization. Although B. amyloliquefaciens subsp. plantarum strains contain gene clusters that encode many different secondary metabolites, only polyketide biosynthetic clusters that encode difficidin and macrolactin are conserved within this subspecies. To evaluate their role in plant pathogen biocontrol, genes involved in secondary metabolite biosynthesis were deleted in a B. amyloliquefaciens subsp. plantarum strain, revealing that difficidin expression is critical in reducing the severity of disease, caused by Xanthomonas axonopodis pv. vesicatoria in tomato plants. This study defines genomic features of PGPR strains and links them with biocontrol activity and with host colonization.


Microbiology | 2012

An outer membrane porin protein modulates phage susceptibility in Edwardsiella ictaluri.

Mohammad J. Hossain; Kh. Shamsur Rahman; Jeffery S. Terhune; Mark R. Liles

Bacteriophages ΦeiAU and ΦeiDWF are lytic to the catfish pathogen Edwardsiella (Edw.) ictaluri. The Edw. ictaluri host factors that modulate phage-host interactions have not been described previously. This study identified eleven unique Edw. ictaluri host factors essential for phage infection by screening a transposon mutagenized library of two Edw. ictaluri strains for phage-resistant mutants. Two mutants were isolated with independent insertions in the ompLC gene that encodes a putative outer membrane porin. Phage binding and efficiency of plaquing assays with Edw. ictaluri EILO, its ompLC mutant and a complemented mutant demonstrated that OmpLC serves as a receptor for phage ΦeiAU and ΦeiDWF adsorption. Comparison of translated OmpLCs from 15 Edw. ictaluri strains with varying degrees of phage susceptibility revealed that amino acid variations were clustered on the predicted extracellular loop 8 of OmpLC. Deletion of loop 8 of OmpLC completely abolished phage infectivity in Edw. ictaluri. Site-directed mutagenesis and transfer of modified ompLC genes to complement the ompLC mutants demonstrated that changes in ompLC sequences affect the degree of phage susceptibility. Furthermore, Edw. ictaluri strain Alg-08-183 was observed to be resistant to ΦeiAU, but phage progeny could be produced if phage DNA was electroporated into this strain. A host-range mutant of ΦeiAU, ΦeiAU-183, was isolated that was capable of infecting strain Alg-08-183 by using OmpLC as a receptor for adsorption. The results of this study identified Edw. ictaluri host factors required for phage infection and indicated that OmpLC is a principal molecular determinant of phage susceptibility in this pathogen.


Genome Announcements | 2013

Complete Genome Sequence of Staphylococcus aureus Tager 104, a Sequence Type 49 Ancestor

Richard W. Davis; Mohammad J. Hossain; Mark R. Liles; Peter Panizzi

ABSTRACT We report here the complete genome sequence of Staphylococcus aureus Tager 104, originally isolated from a cutaneous abscess in 1947 by Morris Tager. Sequence typing of the strain revealed its membership in sequence type 49 (ST49), a previously unknown multilocus sequence type (MLST) in clinical samples.


Fungal Biology | 2016

Comparative behavior of root pathogens in stems and roots of southeastern Pinus species.

G. Matusick; Ryan L. Nadel; David Walker; Mohammad J. Hossain; Lori G. Eckhardt

Root diseases are expected to become a greater threat to trees in the future due to accidental pathogen introductions and predicted climate changes, thus there is a need for accurate and efficient pathogenicity tests. For many root pathogens, these tests have been conducted in stems instead of roots. It, however, remains unclear whether stem and root inoculations are comparable for most fungal species. In this study we compared the growth and damage caused by five root pathogens (Grosmannia huntii, Grosmannia alacris, Leptographium procerum, Leptographium terebrantis, and Heterobasidion irregulare) in root and stem tissue of two Pinus species by inoculating mature trees and tissue amended agar in the laboratory. Most fungal species tested caused greater damage in roots of both pine hosts following inoculation. The relationship between root and stem damage was, however, similar when most combinations of pathogens were compared. These results suggest that although stem inoculations are not suitable for determining the actual damage potential of a given species, they may be viewed as a useful surrogate for root inoculations when comparing the relative pathogenicity of multiple species. When grown on amended agar, fungal species generally had greater growth in stem tissue, contrasting with the findings from tree inoculations.


Genome Announcements | 2015

Draft Genome Sequence of Bacillus amyloliquefaciens AP183 with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus

Shamima Nasrin; Mohammad J. Hossain; Mark R. Liles

ABSTRACT Bacillus amyloliquefaciens AP183 expresses secondary metabolites that inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA). Here, we present a ~3.99-Mbp draft genome sequence of AP183 with the aims of providing insights into the genomic basis of its antibacterial mechanisms and exploring its potential use in preventing MRSA skin colonization.

Collaboration


Dive into the Mohammad J. Hossain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roxana Beaz-Hidalgo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt J. Griffin

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge