Mohammad Manjurul Islam
University of Ontario Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Manjurul Islam.
Vehicle System Dynamics | 2012
Mohammad Manjurul Islam; Xuejun Ding; Yuping He
This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs’ manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it ‘drivers’ the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2010
Yuping He; Mohammad Manjurul Islam; Timothy D. Webster
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer. Simulation results illustrate that compared with the baseline vehicle, the one derived from the design synthesis approach decreases low-speed off-tracking by 35.2% and reduces high-speed rearward amplification ratio by 30.0%. The proposed approach may be used for identifying desired design variables and predicting performance envelopes in the early design stages of AHVs with ATS systems.
SAE 2011 World Congress & Exhibition | 2011
Rafay Shamim; Mohammad Manjurul Islam; Yuping He
This paper examines the performance of different active control strategies for improving lateral stability of car-trailer systems using numerical simulations. For car-trailer systems, three typical unstable motion modes, including trailer swing, jack-knifing and roll-over, have been identified. These unstable motion modes represent potentially hazardous situations. The effects of passive mechanical vehicle parameters on the stability of car-trailer systems have been well addressed. For a given car-trailer system, some of these passive parameters, e.g., the center of gravity of the trailer, are greatly varied under different operating conditions. Thus, lateral stability cannot be guaranteed by selecting a specific passive parameter set. To address this problem, various active control techniques have been proposed to improve handling and stability of car-trailer systems. Feasible control methods involve active trailer steering control (ATSC) and active trailer braking (ATB). Recently, a variable geometry approach (VGA) has been investigated. The essence of this method is to actively control the lateral displacement of the car-trailer hitch in order to improve high-speed stability of the vehicle system. To derive the three controllers, their respective yaw plane models are introduced. The simulation results based on each control method are examined and compared against each other. Through the benchmark comparisons, the features of different control strategies are identified and their applicability discussed.
ieee intelligent vehicles symposium | 2015
Mohammad Manjurul Islam; Leo Laine; Bengt J H Jacobson
This paper describes an advance controller designed using the nonlinear inversion technique of a Modelica® based simulation tool, such as Dymola®, for active dolly steering of a high capacity transport vehicle. Actuator dynamics is included in the inverse model controller. Therefore, it can automatically generate required steering angle request for the dolly axles of the vehicle combination. The resultant controller is transfered as a functional mock-up unit (FMU) to Simulink® environment where the actual simulations are conducted. The controller is simulated against a high-fidelity vehicle model of an A-double combination from Virtual Truck Models (VTM) library - developed by Volvo Group Trucks Technology. Effects of variations of the actual actuator dynamics, with respect to the modeled dynamics in the inverse model controller, on overall vehicle performance are investigated.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2015
Mohammad Manjurul Islam; Yuping He; Shenjin Zhu; Qiushi Wang
This paper provides valuable guidelines on the selection of dynamic vehicle models for control algorithm development, design optimization and linear stability analysis for multi-trailer articulated heavy vehicles with active safety systems. The validation of yaw-plane and yaw–roll models of a tractor–two-semitrailer combination using the TruckSim software package is presented in this paper. A linear four-degree-of-freedom yaw-plane model and a linear seven-degree-of-freedom yaw–roll model of the vehicle were generated, compared and evaluated. The linear models of the multi-trailer articulated heavy vehicle yield numerical simulation results which are validated by comparing with those obtained from the corresponding non-linear TruckSim model. This paper also includes eigenvalue and frequency-response analysis of the linear models to estimate the unstable motion modes and to predict the unique dynamic features of the multi-trailer articulated heavy vehicle in the frequency domain. A benchmark investigation of the models was performed to examine the fidelity, the complexity and the applicability of the linear models.
Journal of Mechanical Design | 2012
Yuping He; Mohammad Manjurul Islam
An important design decision for active trailer steering (ATS) systems for articulated heavy vehicles (AHVs) is the trade-off between maneuverability and lateral stability. This paper presents an automated design method for this trade-off. The proposed method has the following features: (1) a design framework for bilevel optimization of ATS systems is formulated; (2) design variables of ATS controllers and trailers are optimized simultaneously; (3) two controllers are designed for the ATS system for improving stability and enhancing maneuverability, respectively; and (4) a driver model is introduced in the virtual vehicle simulation for closed-loop testing maneuvers. The design framework allows automation of vehicle modeling, controller construction, performance evaluation, and design variable selection, and all required design processes are implemented in a single loop. The proposed method is compared to a previously published two-loop design method, showing that the new approach can effectively identify desired variables and predict performance envelopes.
International Journal of Heavy Vehicle Systems | 2013
Mohammad Manjurul Islam; Yuping He
This paper presents a parallel design optimisation method for Articulated Heavy Vehicles (AHVs) with Active Safety Systems (ASSs). In previous studies, a Genetic Algorithm (GA) has been applied to the design synthesis of AHVs and the objective function evaluations are computationally expensive. From a design point of view, the most challenging task is to deal with the trade-off relationship between unstable motion modes at high speeds and manoeuvrability at low speeds. To tackle the problem, a parallel computation technique with a master-slave system is proposed for the design of AVHs with ASSs. Active Trailer Steering (ATS), Differential Braking (DB) and Anti-Roll (AR) sub-systems are combined in an integrated ASS. Considering the interaction between the mechanical trailer and ASS, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailers in a single design loop using the masterslave computing system. The proposed method provides an effective approach to the design synthesis of AHVs with ASSs using a parallel computation technique.
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems Montreal, Quebec, Canada, August 15–18, 2010 | 2010
Mohammad Manjurul Islam; Yuping He; Timothy D. Webster
This paper presents an automated design synthesis approach for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor maneuverability when traveling at low speeds. Moreover, AHVs exhibit unstable motion modes at high speeds. To address the problem of maneuverability, ‘passive’ trailer steering systems have been developed. These systems improve low-speed performance, but feature with low lateral stability at high speeds. Some ATS systems have been proposed to improve highspeed lateral stability. However, these systems typically degrade maneuverability when applied at low speeds. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. This new design method has the following features: the optimal active design variables of the ATS systems and the optimal passive design variables of the vehicle are identified in a single design loop; in the design process, to evaluate the vehicle performance measures, a driver model is introduced and it ‘drives’ the vehicle model based on the well-defined testing specifications. Through the design optimization of an ATS system for an AHV with a tractor and a full trailer, this single design loop (SDL) method is compared against a published two design loop (TDL) method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2017
Yuping He; Mohammad Manjurul Islam; Shenjin Zhu; Thomas Hu
This paper presents a design synthesis framework for directional performance optimization of multi-trailer articulated heavy vehicles with trailer lateral dynamic control systems, e.g. active trailer steering, trailer differential braking, active roll control or the coordination of the three systems. In order to demonstrate the effectiveness of the proposed framework, it was applied to the design optimization of a multi-trailer articulated heavy vehicle with an active trailer steering controller. In the design, a set of lateral stability measures is originally defined, and the design problem under simulated test manoeuvres is implemented using a parallel computing technique. It is illustrated that the proposed framework and the performance measures can be used to identify effectively the desired variables and to predict reliably the performance envelopes of multi-trailer articulated heavy vehicles with active safety systems by considering the concept of driver-adaptive-vehicle design.
international conference on intelligent transportation systems | 2016
Toheed Ghandriz; Jonas Hellgren; Mohammad Manjurul Islam; Leo Laine; Bengt J H Jacobson
Many researches have been focused on vehicle routing problem during past decades where subject vehicles are previously fully designed and ready to start operation. Further, extensive studies have been done on powertrain design irrespective of the routes where the vehicle is going to be employed. In the present paper, we try to define a new branch of problems where the vehicle design, in particular its propulsion system and loading capacity, is treated simultaneously with the routing problem. The focus is on optimization based design of heterogeneous electric truck fleet to perform a prescribed task with a lowest cost on an available set of routes. The approach is illustrated in a simple case study problem. It is shown that long heavy combination vehicles are energy-efficient but not cost-optimal on short routes.