Mohammad Massumi
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Massumi.
Experimental Cell Research | 2014
Mohammad Massumi; Elham Hoveizi; Parvaneh Baktash; Abdollah Hooti; Leili Ghazizadeh; Samad Nadri; Farzaneh Pourasgari; Athena Hajarizadeh; Masoud Soleimani; Mohammad Nabiuni; Mohammad Reza Khorramizadeh
Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1.
ACS Applied Materials & Interfaces | 2017
Leila Mohammadi Amirabad; Mohammad Massumi; Mehdi Shamsara; Iman Shabani; Afshin Amari; Majid Mossahebi Mohammadi; Simzar Hosseinzadeh; Saeid Vakilian; Sarah K. Steinbach; Mohammad Reza Khorramizadeh; Masoud Soleimani; Jalal Barzin
In the embryonic heart, electrical impulses propagate in a unidirectional manner from the sinus venosus and appear to be involved in cardiogenesis. In this work, aligned and random polyaniline/polyetersulfone (PANI/PES) nanofibrous scaffolds doped by Camphor-10-sulfonic acid (β) (CPSA) were fabricated via electrospinning and used to conduct electrical impulses in a unidirectional and multidirectional fashion, respectively. A bioreactor was subsequently engineered to apply electrical impulses to cells cultured on PANI/PES scaffolds. We established cardiovascular disease-specific induced pluripotent stem cells (CVD-iPSCs) from the fibroblasts of patients undergoing cardiothoracic surgeries. The CVD-iPSCs were seeded onto the scaffolds, cultured in cardiomyocyte-inducing factors, and exposed to electrical impulses for 1 h/day, over a 15-day time period in the bioreactor. The application of the unidirectional electrical stimulation to the cells significantly increased the number of cardiac Troponin T (cTnT+) cells in comparison to multidirectional electrical stimulation using random fibrous scaffolds. This was confirmed by real-time polymerase chain reaction for cardiac-related transcription factors (NKX2.5, GATA4, and NPPA) and a cardiac-specific structural gene (TNNT2). Here we report for the first time that applying electrical pulses in a unidirectional manner mimicking the unidirectional wave of electrical stimulation in the heart, could increase the derivation of cardiomyocytes from CVD-iPSCs.
Biotechnology and Applied Biochemistry | 2012
Samira Talebi; Ahmad Aleyasin; Masoud Soleimani; Mohammad Massumi
Pancreatic duodenum homeobox protein‐1 (PDX1) is a master regulatory gene in pancreatic development. Reprogramming of mesenchymal stem cells (MSCs) is a promising tool for producing insulin‐producing cells. In this study, lentivirus harboring PDX1 (LV‐PDX1) has been used for persistence gene expression in MSCs. The objective of this study was to evaluate the potential of lentivirus to introduce the PDX1 gene into MSCs to produce insulin‐secreting cells and apply it for treatment of hyperglycemia in diabetic rats. MSCs were isolated from rat bone marrow, characterized, and transduced by LV‐PDX1. Significant expressions of PDX1, neurogenin3, glucagon, glucose transporter2 (Glut2), and insulin were detected by quantitative reverse transcription‐polymerase chain reaction (P < 0.05). PDX1 and insulin were detected at the protein level by immunofluorescence analysis. PDX1 could trigger a gene expression cascade that involved pancreatic endocrine differentiation and also revealed the glucose sensing ability by expressing Glut2 in high‐glucose medium. The insulin secretion of MSCsPDX1+ in the high‐glucose medium was 1.75‐fold higher than that secreted in the low‐glucose medium (P < 0.05). MSCsPDX1+ implanted into diabetic rats could decrease the blood glucose level from 485 mg/dL to the normal level in 3 days. This study showed MSCsPDX1+ have the potential to be used as a viable resource in cell‐based gene therapy of type 1 diabetes.
Journal of Cellular Physiology | 2017
Bahareh Rajaei; Mehdi Shamsara; Masoumeh Fakhr Taha; Leila Mohammadi Amirabad; Mohammad Massumi; Mohammad Hossein Sanati
Human‐induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient‐ and disease‐specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin‐producing pancreatic β‐cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five‐step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose‐responsive insulin‐producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut‐tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage‐specific markers. The produced cells exhibited many properties of functional β‐cells, including expression of critical β‐cells transcription factors, the potency to secrete C‐peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin‐secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs‐derived glucose‐responsive insulin‐secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616–2625, 2017.
Cellular Immunology | 2015
Afshin Amari; Massoumeh Ebtekar; Seyed Mohammad Moazzeni; Masoud Soleimani; Leila Mohammadi Amirabad; Mohammad Taher Tahoori; Mohammad Massumi
Human Whartons Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are considered as an alternative for bone-marrow-derived MSCs. These cells have immunosuppressive properties. It was unclear whether the WJ-MSCs would sustain their immunomodulatory characteristics after lentiviral transduction or not. In this study, we evaluated immunomodulatory properties of WJ-MSCs after lentiviral transduction. HWJ-MSCs were transduced with lentiviral particles. Expression of transduced and un-transduced hWJ-MSCs surface molecules and secretion of IL-10, HGF, VEGF and TGF-β was analyzed. Cell proliferation and frequency of CD4(+)CD25(+) CD127(low/neg) Foxp3(+) T regulatory cells was measured. There was no difference between the surface markers and secretion of IL-10, HGF, VEGF and TGF-β in transduced and un-transduced hWJ-MSCs. Both cells inhibited the proliferation of PHA stimulated PBMCs, and improved the frequency of T regulatory cells. These findings suggest that lentiviral transduction does not alter the immunomodulatory function of hWJ-MSCs. However, lentiviral transduction may have a wide range of applications in gene therapy.
PLOS ONE | 2016
Niusha Khazaie; Mohammad Massumi; Ping Wee; Mahdieh Salimi; Abdulshakour Mohammadnia; Moein Yaqubi
Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs.
Cell Biology International | 2015
Elham Hoveizi; Mohammad Massumi; Somayeh Ebrahimi-Barough; Shima Tavakol; Jafar Ai
The first step in the formation of hepatocytes and beta cells is the generation of definitive endoderm (DE) which involves a central issue in developmental biology. Human induced pluripotent stem cells (hiPSCs) have the pluripotency to differentiate into all three germ layers in vitro and have been considered potent candidates for regenerative medicine as an unlimited source of cells for therapeutic applications. In this study, we investigated the differentiating potential of hiPSCs on poly (ε‐caprolactone) (PCL) nanofibrous scaffold into DE cells. Here, we demonstrate directed differentiation of hiPSCs by factors such as Activin A and Wnt3a. The differentiation was determined by immunofluoresence staining with Sox17, FoxA2 and Goosecoid (Gsc) and also by qRT‐PCR analysis. The results of this study showed that hiPSCs, as a new cell source, have the ability to differentiate into DE cells with a high capacity and also demonstrate that three dimension (3D) culture provides a suitable nanoenviroment for growth, proliferation and differentiation of hiPSCs. PCL nanofibrous scaffold with essential supplements, stimulating factors and EB‐derived cells is able to provide a novel method for enhancing functional differentiation of hiPSCs into DE cells.
Journal of Cellular Physiology | 2016
Abdulshakour Mohammadnia; Moein Yaqubi; Farzaneh Pourasgari; Eric Neely; Hossein Fallahi; Mohammad Massumi
The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein–protein interactions, protein–DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs‐derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1‐ERK2, FGF, TGF‐beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994–2006, 2016.
Journal of Biomedical Materials Research Part B | 2017
Farzaneh Khademi; Jafar Ai; Masoud Soleimani; Javad Verdi; Seyed Mohammad Tavangar; Esmaeil Sadroddiny; Mohammad Massumi; Seyed Mahmoud Hashemi
Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes.
Neuroscience Letters | 2016
Salemeh Salemi; Parvaneh Baktash; Bahareh Rajaei; Mehri Noori; Hossein Amini; Mehdi Shamsara; Mohammad Massumi
Parkinsons disease (PD) is a neurodegenerative disorder, in which the nigro-striatal Dopaminergic (DAergic) neurons are selectively lost. Treatment of neurodegenerative diseases with Pluripotent Stem Cells (PSCs) is a big interest in cell therapy. Here, we used induced Pluripotent Stem Cells (iPSCs) expressing two master Dopaminergic (DAergic) transcription factors, i.e. Nurr1 and Pitx3, to generate functional in vitro DAergic-like neurons. After establishment and characterization of Doxycycline-inducible iPSCs from mouse fibroblasts, the cells were transduced by NURR1- and PITX3-harboring lentiviruses. The Nurr1/Pitx3 -iPSCs were differentiated through a five-stage protocol to generate DAergic-like neurons. The results confirmed the efficient expression of DAergic neuron markers in the end of protocol. Beside, the generated cells could exclusively synthesize and secrete Dopamine in response to secretagogues. In conclusion, overexpression of Nurr1 and Pitx3 in iPSCs could efficiently program iPSCs into functional DAergic-like neurons. This finding may have an impact on future stem cell therapy of PD.