Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Rizwan Khan is active.

Publication


Featured researches published by Mohammad Rizwan Khan.


International Journal of Biological Macromolecules | 2017

Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium.

Gaurav Sharma; Mu. Naushad; Ala’a H. Al-Muhtaseb; Amit Kumar; Mohammad Rizwan Khan; Susheel Kalia; Shweta; Manju Bala; Arush Sharma

In this study, chitosan-crosslinked-poly (alginic acid) nanohydrogel (CN-cl-PL(AA)NHG) was synthesized by co-polymerization method. It was used an effective adsorbent for the exclusion of Cr(VI) metal ion from aqueous medium. The synthesized nanohydrogel was characterized by FTIR, SEM and TEM. The TEM images clearly indicated the appearance of smooth surface with average size of particles ranging from 30 to 80nm. The effect of different adsorption parameters like agitation time, temperature, initial metal ion concentration and adsorbent dosage was studied and optimized. The results demonstrated that the prepared chitosan-crosslinked-poly (alginic acid) nanohydrogel had high adsorption tendency for the removal of Cr(VI) from the aqueous solution. The pseudo-second-order equation represented the better adsorption kinetics for the adsorption process. The thermodynamic studies showed the adsorption of Cr(VI) onto CN-cl-PL(AA)NHG was spontaneous and chemical in nature.


International Journal of Biological Macromolecules | 2016

Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye.

Deepak Pathania; Rishu Katwal; Gaurav Sharma; Mu. Naushad; Mohammad Rizwan Khan; Ala’a H. Al-Muhtaseb

Guar gum/Al2O3 (GG/AO) nanocomposite was prepared using simple and cost effective sol-gel method. This nanocomposite was characterized by several analytical techniques viz. scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-vis). The FTIR analysis confirmed that GG/AO composite material was formed. TEM images inferred the particle size in the range between 20 and 45nm. GG/AO nanocomposite exhibited good photocatalytic performance for malachite green (MG) dye (dye initial concentration 1.5×10(-5)M) degradation from aqueous phase. The adsorption followed by photocatalysis and coupled adsorption/photocatalysis reaction achieved about 80% and 90% degradation of MG dye under solar irradiation. Antibacterial test showed the excellent activity of GG/AO nanocomposite against Staphylococcus aureus.


International Journal of Biological Macromolecules | 2017

ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis

Amit Kumar; Mu. Naushad; Anamika Rana; Inamuddin; Preeti; Gaurav Sharma; Ayman A. Ghfar; Florian J. Stadler; Mohammad Rizwan Khan

In this research work we report Gum-ghatti supported ZnSe-WO3 nano-hetero-assembly for solar powered degradation of endocrine disruptor Bisphenol S (BPA). The photocatalyst was characterized by Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HRTEM), Small area electron diffraction (SAED), X-Ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), Photoluminescence (PL), Energy dispersive X-ray (EDX), UV-vis spectrophotometry and Brauner Emmet Teller surface area analyzer (BET). We achieve a Z-scheme photocatalyst (ZnSe-WO3) with a higher charge flow and visible absorption. Gum ghatti acts as a superadsorbent and a sink for charge carriers. The removal of BPA has been studied under three experimental protocols where 99.5% removal was achieved by symbiose of photocatalysis-adsorption-ozonation in just 45min hetero-assembly has a high surface area, stability and reduced carrier recombination. The results have been analyzed by scavenger effect, mass spectrometry, kinetics and total organic carbon (TOC) analysis. 49.4% of TOC was removed and COD was reduced to 16.7% after 2h in symbiotic condition. From the band edges and scavenger effect it was inferred that superoxide radical anions are major attacking species. The work paves way for designing of novel photocatalysts with increasing biogenic quotient and higher efficiency.


Journal of Chromatography A | 2008

New method for the analysis of heterocyclic amines in meat extracts using pressurised liquid extraction and liquid chromatography-tandem mass spectrometry

Mohammad Rizwan Khan; Rosa Busquets; F.J. Santos; L. Puignou

Heterocyclic amines (HAs) were analysed in meat extract samples using a new method based on pressurised liquid extraction (PLE) and liquid chromatography-tandem mass spectrometry. This method combines the use of a pressurised fluid with a triple quadrupole MS/MS system, resulting in benefits from both systems: high extraction efficiency and sensitivity. The effects of solvent type and PLE operational parameters, such as temperature and extraction time, were studied to obtain maximum recovery of the analytes with minimum contamination. HA extraction was best achieved using dichloromethane/acetone (50/50, v/v) at 80 degrees C for 10 min. Recoveries ranged from 45% to 79% with good quality parameters: limit of detection values between 0.02 and 1 ng g(-1), linearity (r(2)>0.997), and run-to-run and day-to-day precisions with relative standard deviations lower than 13% achieved at both low (0.20 microg g(-1)) and medium (1.0 microg g(-1)) concentrations. This method reduces sample manipulation and total extraction time by nearly four-fold compared to conventional solid phase extraction. The optimised method was validated using laboratory reference material based on a meat extract, and was successfully applied to HA analysis in several cooked beef samples.


Journal of Separation Science | 2013

Analysis of aflatoxins in nonalcoholic beer using liquid–liquid extraction and ultraperformance LC‐MS/MS

Mohammad Rizwan Khan; Zeid Abdullah Alothman; Ayman A. Ghfar; Saikh Mohammad Wabaidur

Aflatoxins AFB1, AFB2, AFG1, and AFG2 are toxic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus and posses a potential threat to food safety. In the present work, liquid-liquid extraction and ultraperformance LC-MS/MS method has been applied for the determination of four naturally occurring aflatoxins AFB1, AFB2, AFG1, and AFG2 in nonalcoholic beer. Aflatoxins extraction from nonalcoholic beer was carried out using liquid-liquid extraction procedure. The effects of solvent-types were studied to obtain maximum recovery of the target analytes with minimum contamination. Among different solvents, the aflatoxins extraction was best achieved using ethyl acetate. The obtained recoveries were ranged from 85 to 96% with good quality parameters: LOD values between 0.001 and 0.003 ng/mL, linearity of the calibration curve (r(2) > 0.999), and repeatability (run-to-run) and reproducibility (day-to-day) precisions with RSDs lower than 5% (n = 5) achieved at 0.50 ng/mL concentration. The optimized liquid-liquid extraction in combination with ultraperformance LC-MS/MS was applied successfully to the analysis of AFB1, AFB2, AFG1, and AFG2 aflatoxins in 11 nonalcoholic beers and were detected up to 15.31 ng/L in some of the samples.


Food Chemistry | 2015

Simultaneous determination of monosaccharides and oligosaccharides in dates using liquid chromatography-electrospray ionization mass spectrometry.

Ayman A. Ghfar; Saikh Mohammad Wabaidur; A. Yacine Badjah Hadj Ahmed; Zeid Abdullah Alothman; Mohammad Rizwan Khan; Nora H. Al-Shaalan

Ultra performance liquid chromatography coupled to mass spectrometry was used for the simultaneous separation and determination of reducing monosaccharides (fructose and glucose), a non-reducing disaccharide (sucrose) and oligosaccharides (kestose and nystose) in HILIC mode. The chromatographic separation of all saccharides was performed on a BEH amide column using an acetonitrile-water gradient elution. The detection was carried out using selected ion recording (SIR) acquisition mode. The validation of the proposed method showed that the limit of detection and limit of quantification values for the five analyzed compounds were in the range of 0.25-0.69μg/mL and 0.82-3.58μg/mL, respectively; while the response was linear in the range of 1-50μg/mL. The developed method showed potential usefulness for a rapid and sensitive analysis of underivatized saccharides and was used for determination of sugars in three date samples (Sefri, Mabroom, Ghassab) which were soxhlet extracted by ethanol.


Talanta | 2016

Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography-mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment.

Mohammad Rizwan Khan; Saikh Mohammad Wabaidur; Zeid Abdullah Alothman; Rosa Busquets; Mu. Naushad

A rapid, sensitive and precise method for the determination of bromate (BrO3(-)), nitrate (NO3(-)) and nitrite (NO2(-)) in drinking water was developed with Ultra performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI/MS). The elution of BrO3(-), NO3(-) and NO2(-) was attained in less than two minutes in a reverse phase column. Quality parameters of the method were established; run-to-run and day-to-day precisions were <3% when analysing standards at 10 µg L(-1). The limit of detection was 0.04 µg NO2(-) L(-1) and 0.03 µg L(-1) for both NO3(-)and BrO3(-). The developed UPLC-ESI/MS method was used to quantify these anions in metropolitan water from Saudi Arabia (Jeddah, Dammam and Riyadh areas) and commercial bottled water (from well or unknown source) after mere filtration steps. The quantified levels of NO3(-) were not found to pose a risk. In contrast, BrO3(-) was found above the maximum contaminant level established by the US Environmental Protection Agency in 25% and 33% of the bottled and metropolitan waters, respectively. NO2(-) was found at higher concentrations than the aforementioned limits in 70% and 92% of the bottled and metropolitan water samples, respectively. Therefore, remediation measures or improvements in the disinfection treatments are required. The concentrations of BrO3(-), NO3(-) and NO2(-) were mapped with Principal Component analysis (PCA), which differentiated metropolitan water from bottled water through the concentrations of BrO3(-) and NO3(-) mainly. Furthermore, it was possible to discriminate between well water; blend of well water and desalinated water; and desalinated water. The point or source (region) was found to not be distinctive.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

A rapid method for the simultaneous determination of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet by ultra performance liquid chromatography-tandem mass spectrometry.

Saikh Mohammad Wabaidur; Zeid Abdullah Alothman; Mohammad Rizwan Khan

In present study, a rapid and sensitive method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet. The optimum chromatographic separation was carried out on a reversed phase Waters® Acquity UPLC BEH C18 column (1.7 μm particle size, 100 mm × 2.1 mm ID) with an isocratic elution profile and mobile phase consisting of 0.1% formic acid in water and acetonitrile (75:25, v/v, pH 3.5) at flow rate of 0.5 mL min(-1). The influences of mobile phase composition, flow rate and pH on chromatographic resolution were investigated. The total chromatographic analysis time was as short as 2 min with excellent resolution. Detection and quantification of the target compounds were carried out with a triple quadrupole mass spectrometer using negative electrospray ionization (ESI) and multiple reaction monitoring (MRM) modes. The performance of the method was evaluated and very low limits of detection less than 0.09 μg g(-1), excellent coefficient correlation (r(2)>0.999) with liner range over a concentration range of 0.1-1.0 μg g(-1) for both L-ascorbic acid and acetylsalicylic acid, and good intraday and interday precisions (relative standard deviations (R.S.D.) <3%), were obtained. Comparison of system performance with traditional liquid chromatography-photo diode array detector (HPLC-PDA) was made with respect to analysis time, sensitivity, linearity and precisions. The proposed UPLC-MS/MS method was found to be reproducible and appropriate for quantitative analysis of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet.


Journal of Separation Science | 2012

Determination of capsaicinoids in Capsicum species using ultra performance liquid chromatography-mass spectrometry

Zeid Abdullah Alothman; Saikh Mohammad Wabaidur; Mohammad Rizwan Khan; Ayman Abdel Ghafar; Mohamed A. Habila; Yacine Badjah Hadj Ahmed

In the present work, a rapid and sensitive ultra performance liquid chromatography-mass spectrometry method has been proposed for the analysis of capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin) present in different Capsicum samples. Extraction of capsaicinoids was carried out by liquid-liquid extraction using ethanol as an extracting solvent, while the chromatographic separation was achieved by reversed phase C(18) column with gradient mobile phase (solvent A: acetonitrile and solvent B: water with 0.1% formic acid). Under the optimum experimental conditions, the linear ranges were 0.5-50 μg/g with correlation coefficient (r(2) ) >0.999 for each capsaicinoids and detection limits were 0.15, 0.05, 0.06, 0.2, and 0.1 μg/g for nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin, respectively. Run-to-run and day-to-day precisions of the method with relative standard deviations <1.5% were achieved for all analyzed capsaicinoids. The robustness of the method was determined by utilizing different injection volumes of the extracts. Furthermore, to validate the system robustness, a run of high number of capsaicinoids present in different varieties of Capsicum samples was performed in this study. All the capsaicinoids were separated in a time of less than 9 min by employing the proposed method.


International Journal of Biological Macromolecules | 2018

Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger

Mu. Naushad; Gaurav Sharma; Amit Kumar; Shweta Sharma; Ayman A. Ghfar; Amit Bhatnagar; Florian J. Stadler; Mohammad Rizwan Khan

Pectin based quaternary amino anion exchanger (Pc-QAE) was prepared using simple crosslinking polymerization method. This anion exchanger was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Pc-QAE was applied for the removal of phosphate anion from the aqueous solution. The adsorption process which was pH dependent showed maximum adsorption of phosphate anions at pH 7. Pc-QAE showed good monolayer adsorption capacity for phosphate anions which demonstrated its good capability towards Langmuir isotherm model. Moreover, the adsorption was evaluated thermodynamically and the negative value of Gibbs free energy (-1.791KJ/mol) revealed the spontaneity of adsorption process. The value of ΔH° and ΔS° were found to be 15.28 and 49.48KJ/mol, respectively representing the endothermic nature and enhancement in degree of freedom due to the adsorption process.

Collaboration


Dive into the Mohammad Rizwan Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge