Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Sarwar Jamal is active.

Publication


Featured researches published by Mohammad Sarwar Jamal.


Journal of Biomolecular Structure & Dynamics | 2017

Biophysical insights into the interaction of hen egg white lysozyme with therapeutic dye clofazimine: modulation of activity and SDS induced aggregation of model protein.

Mohammad Ajmal; Sumit Kumar Chaturvedi; Nida Zaidi; Parvez Alam; Masihuz Zaman; Mohammad Khursheed Siddiqi; Saima Nusrat; Mohammad Sarwar Jamal; Mohamed H. Mahmoud; Gamal Badr; Rizwan Hasan Khan

The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57 × 104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.


PLOS ONE | 2014

Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches.

Mohammad Sarwar Jamal; Shadma Parveen; Mohd A. Beg; Mohd Suhail; Adeel Chaudhary; Ghazi A. Damanhouri; Adel M. Abuzenadah; Mohd Rehan

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3Kγ, AKT1/PKBα, Bcl-2, NF-κB, and Stat3 using molecular docking and (un)binding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease.


Bioinformation | 2016

Molecular mechanisms and mode of tamoxifen resistance in breast cancer.

Shazia Ali; Mahmood Rasool; Hani Chaoudhry; Peter Natesan Pushparaj; Parkash Jha; Abdul Hafiz; Maryam Mahfooz; Ghufrana Abdus Sami; Mohammad Azhar Kamal; Sania Bashir; Ashraf Ali; Mohammad Sarwar Jamal

Breast cancer is one of the most common cancers in women around the globe Tamoxifen is used for the last 40 years as an endocrine therapy for breast cancer. This resulted in the reduction of mortality rate by 30% and it still remains one of the most effective therapies against breast cancer. However, resistance against tamoxifen is still one of the major hurdles in the effective management of breast cancer. Intense research has been conducted in the past decade to further explore its resistance mechanism, but still a lot of research will be needed to effectively alleviate this problem. Several biochemical factors and molecular pathways, such as the modulation of ER signaling, upregulation of growth factors had been observed as key factors for tamoxifen resistance (TR). After, initial therapy of five to ten years, breast cancer patients develops resistance towards this drug. The resistance leads to the development of other cancers like uterine cancer. Here, we briefly explore all the molecular events related to tamoxifen resistance and focus on its mechanism of action as well as other pharmacological approaches to better its beneficial effects in the treatment of breast carcinoma.


Cellular & Molecular Biology Letters | 2015

The pharmacological features of bilirubin: the question of the century

Farhana Zahir; Gulam Rabbani; Rizwan Hasan Khan; Shamim J Rizvi; Mohammad Sarwar Jamal; Adel M. Abuzenadah

Abstract This review looks at the toxicity and metabolism of bilirubin in terms of its pharmacological potential. Its role has gained importance as more research has revealed the functional significance and interrelationship between the gasotransmitters nitric oxide and carbon monoxide. The biological actions of bilirubin have mostly been characterized in the high micromolar range where toxic effects occur. However, it could also prove to be an important cytoprotector for brain tissue, which is inherently less equipped for antioxidant defense. Plasma bilirubin levels negatively correlate to a number of disease states. Higher levels of bilirubin that are still within the normal range provide a protective effect to the body. The effects on various disorders could be tested using controlled pharmacological upregulation of the molecule with animal models. At nanomolar concentrations, considerable benefits have been obtained when the molecule was delivered pharmacologically under in vitro or in vivo test conditions, particularly in neurodegenerative disorders and after tissue or organ transplantation. The induction of heme oxygenase-1 (HMOX-1) via the activation of nuclear factor erythroid 2-related factor or the use of bile pigments in the harvesting of diseased tissue are novel applications, and like every new therapy, should be used with caution. HMOX-1 is tissue specific, and in exceptional states, such as schizophrenia and specific types of renal disorder, the same therapy may have disastrous effects.


Journal of Neuroimmunology | 2016

Anti-inflammatory role of sesamin in STZ induced mice model of diabetic retinopathy.

Saif Ahmad; Nehal M. Elsherbiny; Mohammad Sarwar Jamal; Faisal A. Alzahrani; Rizwanul Haque; Raziuddin Khan; Syed Kashif Zaidi; Mohammed H. Al-Qahtani; Gregory I. Liou; Kanchan Bhatia

Diabetic retinopathy (DR) is the common cause of diabetic vascular complications that leads to the blindness in the working age population throughout the world. Free radicals mediated oxidative stress and inflammation play a significant role in pathophysiology of DR. To find a new and safe drug to treat DR is still challenging and for that purpose the natural compounds may be therapeutic agents. Here we show that sesamin (SES), which is the main component of sesame seed and its oil, and has been reported as potent antioxidant and neuroprotective, could be a therapeutic agent in DR. In the present study, we investigated protective effect of SES in Streptozotocin (STZ) induced DR in mice. The mice were divided into three groups (Control, DR and DR+SES) for the study. After two weeks post-diabetic establishment, mice were treated with SES (30mg/kg BW, i.p, alternate day) for four weeks. Mice body weight and blood glucose level were measured from each group. The microglial activation of retina was determined by immunohistochemistry analysis by using Iba-1 as a microglia marker. Retinal mRNA levels of Iba-1, tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and Intercellular Adhesion Molecule 1 (ICAM-1) were examined by qRT-PCR. The level of iNOS protein expression was examined by immunoblotting. Together these data demonstrate that SES treatment lowered the progression of diabetic retinal injury by: 1) decreasing blood glucose level, 2) suppressing microglia activation, 3) reducing retinal TNF-α and ICAM-1 levels and 4) quenching iNOS expression. In conclusion, the results suggest that SES treatment may be of therapeutic benefit in reducing the progression of DR by ameliorating hyperglycemia and inflammation in diabetic retina.


Non-coding RNA Research | 2016

Non-coding RNAs in cancer diagnosis and therapy

Mahmood Rasool; Arif Malik; Sara Zahid; Muhammad Abdul Basit Ashraf; Mahmood Husain Qazi; Muhammad Asif; Ahmad Zaheer; Muhammad Arshad; Amir Raza; Mohammad Sarwar Jamal

Cancer invasion involves a series of fundamental heterogeneous steps, with each step being distinct in its type regarding its dependence on various oncogenic pathways. Over the past few years, researchers have been focusing on targeted therapies to treat malignancies relying not only on a single oncogenic pathway, but on multiple pathways. Scientists have recently identified potential targets in the human genome considered earlier as non-functional but the discovery of their potential role in gene regulation has put new insights to cancer diagnosis, prognosis and therapeutics. Non coding RNAs (ncRNAs) have been identified as the key gene expression regulators. Long non-coding RNA (lncRNAs) reveal diverse gene expression profiles in benign and metastatic tumours. Improved clinical research may lead to better knowledge of their biogenesis and mechanism and eventually be used as diagnostic biomarkers and therapeutic agents. Small non coding RNAs or micro RNA (miRNA) are capable of reprogramming multiple oncogenic cascades and, thus, can be used as target agents. This review is aimed to give a perspective of non coding transcription in cancer metastasis with an eye on rising clinical relevance of non coding RNAs and their mechanism of action focusing on potential therapeutics for cancer pathogenesis.


PLOS ONE | 2016

BAD, a Proapoptotic Protein, Escapes ERK/RSK Phosphorylation in Deguelin and siRNA-Treated HeLa Cells

Samra Hafeez; Mahwish Urooj; Shamiala Saleem; Zeeshan Gillani; Sumaira Shaheen; Mahmood Husain Qazi; Muhammad Imran Naseer; Zafar Iqbal; Shakeel Ahmed Ansari; Absarul Haque; Muhammad Asif; Manzoor Ahmad Mir; Ashraf Ali; Peter Natesan Pushparaj; Mohammad Sarwar Jamal; Mahmood Rasool

This study has been undertaken to explore the therapeutic effects of deguelin and specific siRNAs in HeLa cells. The data provided clearly show the silencing of ERK 1/2 with siRNAs and inhibition of ERK1/2 with deguelin treatment in HeLa cells. Additionally, we are providing information that deguelin binds directly to anti-apoptotic Bcl-2, Bcl-xl and Mcl-1 in the hydrophobic grooves, thereby releasing BAD and BAX from dimerization with these proteins. This results in increased apoptotic activity through the intrinsic pathway involved in rupture of mitochondrial membrane and release of cytochrome C. Evidence for inhibition of ERK1/2 by deguelin and escape of BAD phosphorylation at serine 112 through ERK/RSK pathway has been further fortified by obtaining similar results by silencing ERK 1/2 each with specific siRNAs. Increase in BAD after treatment with deguelin or siRNAs has been interpreted to mean that deguelin acts through several alternative pathways and therefore can be used as effective therapeutic agent.


Scientific Reports | 2017

Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations

Vijay Kumar; Safikur Rahman; Hani Choudhry; Mazin A. Zamzami; Mohammad Sarwar Jamal; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient’s data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.


PLOS ONE | 2017

Comparative study of extrapolative factors linked with oxidative injury and anti-inflammatory status in chronic kidney disease patients experiencing cardiovascular distress

Mahmood Rasool; Muhammad Abdul Basit Ashraf; Arif Malik; Sulayman Waquar; Shahida Khan; Mahmood Husain Qazi; Waseem Ahmad; Muhammad Asif; Sami Ullah Khan; Ahmad Zaheer; Muther Mansoor Qaisrani; Abdul Rehman Khan; Aamir Iqbal; Amir Raza; Saima Iram; Kashif Kamran; Asim Iqbal; Mohammad Zahid Mustafa; Hani Choudhry; Mazin A. Zamzami; Wesam H. Abdulaal; Mohammad Sarwar Jamal

Background Chronic kidney disease (CKD) is a group of heterogeneous abnormalities affecting the function and structure of the kidney and mostly further proceeds to cardiovascular damage prior to end stage renal disease (ESRD). The oxidative insult and inflammatory mediators have some undefined role in CKD and cardiovascular complications. It is therefore, aimed at to pin point the predictive factors in the development of cardiovascular disorder in patients with chronic kidney disease. Methods Fifty patients of CKD experiencing cardiovascular distress and twenty normal individuals having same age and sex acted as control during these observations. Blood samples (Each 5 ml) were drawn and subjected to centrifugation for 10–15 minutes to separate the serum at 4000-5000rpm. The levels of MDA, GSH, SOD, CAT, VIT C, VIT E, IL-1, TNF-alpha, nitric oxide (NO) and advanced oxidation protein products (AOPPs) were estimated and analyzed. Results The nitric oxide levels in the CKD patients decreased significantly (13.26±1.25 ng/ml) compared to controls (42.15±5.26 ng/ml). The serum vitamin E and C levels in these patients recorded 2.15±0.25 μg/ml and 0.97±0.09 μg/ml respectively as against their assigned controls which read 6.35±1.22 μg/ml and 3.29±0.25 μg/ml. Furthermore, a significantly higher level of Malondialdehyde (MDA) as1.25±0.07 nmol/ml was observed in CKD patients viz-a-viz relevant control. However, the serum SOD, catalase (CAT) and GSH levels in the same patients registered a significant decline as evident from respective figures 0.07±0.002 μg/dl, 1.22±0.012 μmol/mol, and 3.25±1.05 μg/dl. The control for these was observed as0.99±0.06 μg/dl, 3.19±0.05 μmol/mol, and 8.64±0.03 μg/dL. On the other hand, the IL-1 levels in the CKD patients found quite higher (402.5±18.26 pg/ml). This clearly points to substantial increase in oxidative insult and reduced NO levels leading to the renal and cardiovascular damage. Conclusion Observations support the fact that the decrease in anti-oxidative capacity accompanied by higher inflammatory mediators in CKD is indicative of oxidative stress, consequently leading to CKD progression, in all probability to cardiovascular insult. The outcome reiterates that strategies be designed afresh to contain CKD progression to cardiovascular complications and ESRD. One way could be to focus on early detection of stress related to the disease. It requires analyzing the factors related to stress, such as the one reported here. Linking these factors with the symptoms could be a crucial step forward. And further, the disease could be monitored in a more disciplined manner.


PLOS ONE | 2016

Evaluation of Matrix Metalloproteinases, Cytokines and Their Potential Role in the Development of Ovarian Cancer.

Mahmood Rasool; Arif Malik; Muhammad Abdul Basit Ashraf; Gulshan Parveen; Shazia Iqbal; Irfan Ali; Mahmood Husain Qazi; Muhammad Asif; Kashif Kamran; Asim Iqbal; Saima Iram; Sami Ullah Khan; Mohammad Zahid Mustafa; Ahmad Zaheer; Rozeena Shaikh; Hani Choudhry; Mohammad Sarwar Jamal

Background Ovarian cancer is the 5th most common cause of deaths in the women among gynecological tumors. There are many growing evidences that stress and other behavioral factors may affect cancer progression and patient survival. The purpose of this study is to determine the key role of matrix metalloproteinases (MMPs), and cytokines in the aggregation and progression of ovarian cancer. Methodology Stress variables (MDA, AGEs, AOPPs, NO), profile of antioxidants (SOD, Catalase, Vitamin E & A, GSH, GRx, GPx) and inflammatory biomarkers (MMP-9, MMP-2, MMP-11, IL-1α and TNF-α) were biochemically assessed from venous blood of fifty ovarian cancer patients and twenty healthy control subjects. The results of all parameters were analyzed statistically by independent sample t-test. Results The results of the study demonstrated that the levels of stress variables like MDA (3.38±1.12nmol/ml), AGEs (2.72±0.22 ng/ml), AOPPs (128.48±27.23 ng/ml) and NO (58.71±8.67 ng/ml) were increased in the patients of ovarian cancer as compared to control individuals whereas the profile of antioxidants like SOD, Catalase, Vitamin E, Vitamin A, GSH and GRx were decreased in ovarian cancer patients (0.11±0.08 μg/ml, 2.41±1.01μmol/mol of protein, 0.22±0.04 μg/ml, 45.84±9.07μg/ml, 4.88±1.18μg/ml, 5.33±1.26 μmol/ml respectively). But the level of GPx antioxidant was increased in ovarian cancer patients (6.58±0.21μmol/ml). Moreover the levels of MMP-9 (64.87±5.35 ng/ml), MMP-2 (75.87±18.82 ng/ml) and MMP-11 (63.58±8.48 ng/ml) were elevated in the patients. Similarly, the levels of various cytokines TNF-α and IL-1α were also increased in the patients of ovarian cancer (32.17±3.52 pg/ml and 7.04±0.85 pg/ml respectively). Conclusion MMPs are commonly expressed in ovarian cancer which are potential extrapolative biomarkers and have a major role in metastasis. Due to oxidative stress, different cytokines are released by tumor associated macrophages (TAMs) that result in the cancer progression. Consequently, tissue inhibitors of matrix metalloproteinases (TIMPs) are the valuable therapeutic approaches to complement conservative anticancer strategies.

Collaboration


Dive into the Mohammad Sarwar Jamal's collaboration.

Top Co-Authors

Avatar

Mahmood Rasool

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hani Choudhry

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Asif

National Textile University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashraf Ali

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge