Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Wahid Ansari is active.

Publication


Featured researches published by Mohammad Wahid Ansari.


Microbial Cell Factories | 2014

Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

Deepak Bhardwaj; Mohammad Wahid Ansari; Ranjan Kumar Sahoo; Narendra Tuteja

Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.


Plant Physiology and Biochemistry | 2013

A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops

Mohammad Wahid Ansari; Dipesh Kumar Trivedi; Ranjan Kumar Sahoo; Sarvajeet Singh Gill; Narendra Tuteja

The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.


Protoplasma | 2014

Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity

Ranjan Kumar Sahoo; Mohammad Wahid Ansari; Madhusmita Pradhan; Tushar Kanti Dangar; Santanu Mohanty; Narendra Tuteja

Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database.


Physiology and Molecular Biology of Plants | 2008

Raising salinity tolerant rice: recent progress and future perspectives

Anil Kumar Singh; Mohammad Wahid Ansari; Ashwani Pareek; Sneh L. Singla-Pareek

With the rapid growth in population consuming rice as staple food and the deteriorating soil and water quality around the globe, there is an urgent need to understand the response of this important crop towards these environmental abuses. With the ultimate goal to raise rice plant with better suitability towards rapidly changing environmental inputs, intensive efforts are on worldwide employing physiological, biochemical and molecular tools to perform this task. In this regard, efforts of plant breeders need to be duly acknowledged as several salinity tolerant varieties have reached the farmers field. Parallel efforts from molecular biologists have yielded relevant knowledge related to perturbations in gene expression and proteins during stress. Employing transgenic technology, functional validation of various target genes involved in diverse processes such as signaling, transcription, ion homeostasis, antioxidant defense etc for enhanced salinity stress tolerance has been attempted in various model systems and some of them have been extended to crop plant rice too. However, the fact remains that these transgenic plants showing improved performance towards salinity stress are yet to move from ‘lab to the land’. Pondering this, we propose that future efforts should be channelized more towards multigene engineering that may enable the taming of this multigene controlled trait. Recent technological achievements such as the whole genome sequencing of rice is leading to a shift from single gene based studies to genome wide analysis that may prove to be a boon in re-defining salt stress responsive targets.


Communicative & Integrative Biology | 2013

Multiple abiotic stress responsive rice cyclophilin: (OsCYP-25) mediates a wide range of cellular responses

Dipesh Kumar Trivedi; Mohammad Wahid Ansari; Narendra Tuteja

Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses.


Plant Signaling & Behavior | 2013

Comparative physiological response of wheat genotypes under terminal heat stress

Kamla Dhyani; Mohammad Wahid Ansari; Yalaga Rama Rao; Radhey Shyam Verma; Alok Shukla; Narendra Tuteja

Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.


Plant Signaling & Behavior | 2014

Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions

Hukum Singh; Amit Verma; Mohammad Wahid Ansari; Alok Shukla

Field experiment was conducted at G.B.P.U.A.T. Pantnagar, Uttarakhand, India in rainy season of 2008 and 2009 to study the impacts of increased nitrogen doses on growth dynamics, biomass partitioning, chaffy grain and nitrogen use efficiency in 4 rice genotypes viz., Vasumati, Tulsi, Kasturi and Krishna Hamsa. Four doses (N0, N50, N100 and N200 kg N ha−1) of nitrogen in the form of urea were applied in 3 split. Increased trend in growth dynamics during active tillering and flowering stage, and biomass partitioning at the time of active tillering and flowering stage was observed with respect to nitrogen doses. Chaffy grain number and chaffy grain weight per 5 panicles was significantly increased with enhancing nitrogen doses and was highest for Vasumati. Nitrogen use efficiency (NUE) was increased up to N100 kg N ha−1 and it was declined with rising nitrogen doses (N200 kg N ha−1). The highest values for NUE was achieved by rice genotype Krishna Hamsa whereas lowest by Vasumati. In addition to this, a significant correlation between nitrogen doses and growth dynamics, biomass partitioning and chaffy grain was observed. These findings suggest that growth dynamics, biomass partitioning, chaffy grain could be enhanced by the input of high rate of nitrogen fertilizer but not nitrogen use efficiency. Therefore, this study is useful to screen most N efficient genotypes which can be strongly suggested to rice growers to enhance crop yield irrespective of use of high dose of N fertilizers.


Plant Signaling & Behavior | 2013

First evidence of ethylene production by Fusarium mangiferae associated with mango malformation.

Mohammad Wahid Ansari; Alok Shukla; Ramesh Chandra Pant; Narendra Tuteja

Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28–13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.


Plant Signaling & Behavior | 2014

A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice

Ranjan Kumar Sahoo; Mohammad Wahid Ansari; Madhusmita Pradhan; Tushar Kanti Dangar; Santanu Mohanty; Narendra Tuteja

The plant growth promoting rhizobacteria (PGPRs) as a biofertilizer provide agricultural benefits to advance various crops productivity. Recently, we discovered a novel Azotobacter vinellandii (SRIAz3) from rice rhizosphere, which is well competent to improve rice productivity. In this study, we investigated a role of A. vinellandii to confer salinity tolerance in rice (var. IR64). A. vinellandii inoculated rice plants showed higher proline and malondialdehyde content under 200 mM NaCl stress as compared with uninoculated one. The endogenous level of plant hormones viz., indole-3 acetic acid (IAA), gibberellins (GA3), zeatint (Zt) was higher in A. vinellandii inoculated plants under high salinity. The fresh biomass of root and shoot were relatively elevated in A. vinellandii inoculated rice. Further, the macronutrient profile was superior in A. vinellandii inoculated plants under salinity as compared with non-inoculated plants. The present findings further suggest that A. vinellandii, a potent biofertilzer, potentially confer salinity stress tolerance in rice via sustaining growth and improving compatible solutes and nutrients profile and thereby crop improvement.


Protoplasma | 2015

Post-harvest quality risks by stress/ethylene: management to mitigate

Mohammad Wahid Ansari; Narendra Tuteja

Fresh produce, in actual fact, is exposed to multiple stresses through entire post-harvest phase such as handling, storage and distribution. The biotic stresses are associated with various post-harvest diseases leading to massive produce loss. Abiotic stresses such as drought, heat and chilling cause cell weakening, membrane leakage, flavour loss, surface pitting, internal browning, textural changes, softening and mealiness of post-harvest produce. A burst in ‘stress ethylene’ formation makes post-harvest produce to be at high risk for over-ripening, decay, deterioration, pathogen attack and physiological disorders. The mutation study of genes and receptors involved in ethylene signal transduction shows reduced sensitivity to bind ethylene resulting in delayed ripening and longer shelf life of produce. This review is aimed to highlight the various detrimental effects of stress/ethylene on quality of post-harvest produce, primarily fruits, with special emphasize to its subsequent practical management involving the ‘omics’ tools. The outcome of the literature appraised herein will help us to understand the physiological and molecular bases of stress/ethylene which sustain fruit quality at post-harvest phase.

Collaboration


Dive into the Mohammad Wahid Ansari's collaboration.

Top Co-Authors

Avatar

Narendra Tuteja

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ranjan Kumar Sahoo

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Alok Shukla

G. B. Pant University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Dipesh Kumar Trivedi

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Santanu Mohanty

Orissa University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Tushar Kanti Dangar

Central Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Renu Tuteja

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sneh L. Singla-Pareek

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ashwani Pareek

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Gurdeep Bains

G. B. Pant University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge