Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Zavid Parvez is active.

Publication


Featured researches published by Mohammad Zavid Parvez.


Neurocomputing | 2014

Epileptic seizure detection by analyzing EEG signals using different transformation techniques

Mohammad Zavid Parvez; Manoranjan Paul

Abstract Feature extraction and classification are still challenging tasks to detect ictal (i.e., seizure period) and interictal (i.e., period between seizures) EEG signals for the treatment and precaution of the epileptic seizure patient due to different stimuli and brain locations. Existing seizure and non-seizure feature extraction and classification techniques are not good enough for the classification of ictal and interictal EEG signals considering for their non-abruptness phenomena, inconsistency in different brain locations, type (general/partial) of seizures, and hospital settings. In this paper we present generic seizure detection approaches for feature extraction of ictal and interictal signals using various established transformations and decompositions. We extract a number of statistical features using novel ways from high frequency coefficients of the transformed/decomposed signals. The least square support vector machine is applied on the features for classifications. Results demonstrate that the proposed methods outperform the existing state-of-the-art methods in terms of classification accuracy, sensitivity, and specificity with greater consistence for the large size benchmark dataset in different brain locations.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2016

Epileptic Seizure Prediction by Exploiting Spatiotemporal Relationship of EEG Signals Using Phase Correlation

Mohammad Zavid Parvez; Manoranjan Paul

Automated seizure prediction has a potential in epilepsy monitoring, diagnosis, and rehabilitation. Electroencephalogram (EEG) is widely used for seizure detection and prediction. This paper proposes a new seizure prediction approach based on spatiotemporal relationship of EEG signals using phase correlation. This measures the relative change between current and reference vectors of EEG signals which can be used to identify preictal/ictal (before the actual seizure onset/ actual seizure period) and interictal (period between adjacent seizures) EEG signals to predict the seizure. The experiments show that the proposed method is less sensitive to artifacts and provides higher prediction accuracy (i.e., 91.95%) and lower number of false alarms compared to the state-of-the-art methods using intracranial EEG signals in different brain locations of 21 patients from a benchmark data set.


IEEE Transactions on Biomedical Engineering | 2017

Seizure Prediction Using Undulated Global and Local Features

Mohammad Zavid Parvez; Manoranjan Paul

In this study, a seizure prediction method is proposed based on a patient-specific approach by extracting undulated global and local features of preictal/ictal and interictal periods of EEG signals. The proposed method consists of feature extraction, classification, and regularization. The undulated global feature is extracted using phase correlation between two consecutive epochs of EEG signals and an undulated local feature is extracted using the fluctuation and deviation of EEG signals within the epoch. These features are further used for classification of preictal/ictal and interictal EEG signals. A regularization technique is applied on the classified outputs for the reduction of false alarms and improvement of the overall prediction accuracy (PA). The experimental results confirm that the proposed method provides high PA (i.e., 95.4%) with low false positive per hour using intracranial EEG signals in different brain locations of 21 patients from a benchmark dataset. Combining global and local features enables the transition point to be determined between different types of signals with greater accuracy, resulting successful versus unsuccessful prediction of seizure. The theoretical contribution of this study may provide an opportunity for the development of a clinical device to predict forthcoming seizure in real time.


Iet Signal Processing | 2015

Epileptic seizure detection by exploiting temporal correlation of electroencephalogram signals

Mohammad Zavid Parvez; Manoranjan Paul

Electroencephalogram (EEG) has a great potential for diagnosis and treatment of brain disorders like epileptic seizure. Feature extraction and classification of EEG signals is the crucial task to detect the stages of ictal and interictal signals for treatment and precaution of epileptic patients. However, existing seizure and non-seizure feature extraction techniques are not good enough for the classification of ictal and interictal EEG signals considering the non-abruptness phenomena and inconsistency in different brain locations. In this study, the authors present a new approach for feature extraction and classification by exploiting temporal correlation within EEG signals for better seizure detection as any abruptness in the temporal correlation within a signal represents the transition of a phenomenon. In the proposed methods, they divide an EEG signal into a number of epochs and arrange them into two-dimensional matrix and then apply different transformation/decomposition to extract a number of statistical features. These features are then used as an input into LS-SVM to classify them. Experimental results show that the proposed methods outperform the existing state-of-the-art method for better classification in terms of sensitivity, specificity and accuracy of ictal and interictal period of epilepsy for benchmark datasets and different brain locations.


international conference of the ieee engineering in medicine and biology society | 2015

Seizure prediction by analyzing EEG signal based on phase correlation

Mohammad Zavid Parvez; Manoranjan Paul

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.


Biomedical Engineering: Applications, Basis and Communications | 2015

NOVEL APPROACHES OF EEG SIGNAL CLASSIFICATION USING IMF BANDWIDTH AND DCT FREQUENCY

Mohammad Zavid Parvez; Manoranjan Paul

Electroencephalogram (EEG) is a record of ongoing electrical signal to represent the human brain activity. It has great potential for the diagnosis to treatment of mental disorder and brain diseases such as epileptic seizure. Features extraction and classification is a crucial task to detect the stage of ictal (i.e. seizure period) and interictal (i.e. period between seizures) EEG signals for the treatment and precaution of the patient. However, existing seizure and non-seizure feature extraction techniques are not good enough for the classification of ictal and interictal EEG signals considering their non-abrupt phenomena and inconsistency in different brain locations. In this paper, we present new approaches for feature extraction using high-frequency components from discrete cosine transformation (DCT) and intrinsic mode function (IMF) extracted from empirical mode decomposition (EMD). These features are then used as an input to least square-support vector machine (LV-SVM) to classify ictal and interictal EEG signals. Experimental results show that the proposed methods outperform the existing state-of-the-art method for better classification in terms of sensitivity, specificity, and accuracy with greater consistence of ictal and interictal period of epilepsy for benchmark dataset from different brain locations.


computer and information technology | 2014

EEG signal classification using frequency band analysis towards epileptic seizure prediction

Mohammad Zavid Parvez; Manoranjan Paul


Journal of medical and bioengineering | 2015

Detection of Pre-stage of Epileptic Seizure by Exploiting Temporal Correlation of EMD Decomposed EEG Signals

Mohammad Zavid Parvez; Manoranjan Paul; Michael Antolovich


computer and information technology | 2012

Features extraction and classification for Ictal and Interictal EEG signals using EMD and DCT

Mohammad Zavid Parvez; Manoranjan Paul


Archive | 2016

Prediction and Detection of Epileptic Seizure

Mohammad Zavid Parvez; Manoranjan Paul

Collaboration


Dive into the Mohammad Zavid Parvez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge