Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed A. Abdelsaid is active.

Publication


Featured researches published by Mohammed A. Abdelsaid.


British Journal of Pharmacology | 2011

Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity

Mohammed M.H. Al-Gayyar; Mohammed A. Abdelsaid; Suraporn Matragoon; Bindu Pillai; Azza B. El-Remessy

BACKGROUND AND PURPOSE Up‐regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti‐apoptotic defences and stimulates pro‐inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression.


Stroke | 2009

Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke

Anna Kozak; Adviye Ergul; Azza B. El-Remessy; Maribeth H. Johnson; Livia S. Machado; Hazem Elewa; Mohammed A. Abdelsaid; Daniel C. Wiley; Susan C. Fagan

BACKGROUND AND PURPOSE We have shown that acute treatment with candesartan in an experimental model of stroke resulted in vascular protection and improved outcomes at 24 hours poststroke, but the mechanisms are unknown. We now examine effects of candesartan on proangiogenic factors and 7-day outcomes using the same treatment paradigm. METHODS Male Wistar rats underwent 3 hours of middle cerebral artery occlusion followed by reperfusion. A single dose of 1 mg/kg candesartan intravenously was given at reperfusion. Animals received neurobehavioral testing before middle cerebral artery occlusion, at 24 hours after middle cerebral artery occlusion, and at 7 days. Blood pressure was measured by telemetry. Animals euthanized at 24 hours had brain tissue and cerebrospinal fluid collected for matrix metalloproteinase activity, vascular endothelial growth factor expression, and tube formation assay. Neurobehavioral testing included elevated body swing test, Bederson, beam walk, and paw grasp. Cerebrovascular density was quantified using immunohistochemistry at 24 hours and 7 days. RESULTS Matrix metalloproteinase-2 activity and vascular endothelial growth factor expression were higher (P=0.035, P=0.042, respectively) and cerebrospinal fluid was significantly more proangiogenic (5x tube formation; P=0.002) in the candesartan group at 24 hours. Although no difference was seen in infarct size at 7 days, treatment improved Bederson scores (2.1 versus 2.9, P=0.0083), elevated body swing test (22.9 versus 39.4, P=0.021), and paw grasp (1.29 versus 2.88, P=0.0001) at 7 days. Candesartan treatment resulted in increased vascular density in the striatum at 7 days (P=0.037). CONCLUSIONS Candesartan after reperfusion augments ischemia-induced angiogenic state and provides long-term benefits. The beneficial effects may involve vascular protection and enhancement of early angiogenic remodeling.


Diabetes | 2015

Metformin Treatment in the Period After Stroke Prevents Nitrative Stress and Restores Angiogenic Signaling in the Brain in Diabetes

Mohammed A. Abdelsaid; Roshini Prakash; Weiguo Li; Maha Coucha; Sherif Hafez; Maribeth H. Johnson; Susan C. Fagan; Adviye Ergul

Diabetes impedes vascular repair and causes vasoregression in the brain after stroke, but mechanisms underlying this response are still unclear. We hypothesized that excess peroxynitrite formation in diabetic ischemia/reperfusion (I/R) injury inactivates the p85 subunit of phosphoinositide 3-kinase (PI3K) by nitration and diverts the PI3K–Akt survival signal to the p38–mitogen-activated protein kinase apoptosis pathway. Nitrotyrosine (NY), Akt and p38 activity, p85 nitration, and caspase-3 cleavage were measured in brains from control, diabetic (GK), or metformin-treated GK rats subjected to sham or stroke surgery and in brain microvascular endothelial cells (BMVECs) from Wistar and GK rats subjected to hypoxia/reoxygenation injury. GK rat brains showed increased NY, caspase-3 cleavage, and p38 activation and decreased Akt activation. Metformin attenuated stroke-induced nitrative signaling in GK rats. GK rat BMVECs showed increased basal nitrative stress compared with controls. A second hit by hypoxia/reoxygenation injury dramatically increased the nitration of p85 and activation of p38 but decreased Akt. These effects were associated with impairment of angiogenic response and were restored by treatment with the peroxynitrite scavenger 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride or the nitration inhibitor epicatechin. Our results provide evidence that I/R-induced peroxynitrite inhibits survival, induces apoptosis, and promotes peroxynitrite as a novel therapeutic target for the improvement of reparative angiogenesis after stroke in diabetes.


Journal of Cell Science | 2012

S-Glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration

Mohammed A. Abdelsaid; Azza B. El-Remessy

Summary Although promising, the ability to regulate angiogenesis through delivery of VEGF remains an unrealized goal. We have shown previously that physiological levels of peroxynitrite (1 µM) are required for a VEGF-mediated angiogenic response, yet the redox-regulated mechanisms that govern the VEGF signal remain unexplored. We assessed the impact of VEGF and peroxynitrite on modifying redox-state, the level of reduced-glutathione (GSH) and S-glutathionylation on regulation of the low molecular weight protein tyrosine phosphatase (LMW-PTP) and focal adhesion kinase (FAK), which are key mediators of VEGF-mediated cell migration. Stimulation of human microvascular endothelial (HME) cells with VEGF (20 ng/ml) or peroxynitrite (1 µM) caused an immediate and reversible negative-shift in the cellular redox-state and thiol oxidation of LMW-PTP, which culminated in cell migration. VEGF causes reversible S-glutathionylation of LMW-PTP, which inhibits its phosphorylation and activity, and causes the transient activation of FAK. Modulating the redox-state using decomposing peroxynitrite (FeTPPS, 2.5 µM) or the GSH-precursor [N-acetylcysteine (NAC), 1 mM] caused a positive-shift of the redox-state and prevented VEGF-mediated S-glutathionylation and oxidative inhibition of LMW-PTP. NAC and FeTPPS prevented the activation of FAK, its association with LMW-PTP and cell migration. Inhibiting LMW-PTP expression markedly enhanced FAK activation and cell migration. Although mild oxidative stress achieved by combining VEGF with 0.1–0.2 mM peroxynitrite augmented cell migration, an acute shift to oxidative stress achieved by combining VEGF with 0.5 mM peroxynitrite induced and sustained FAK activation, and LMW-PTP S-glutathionylation, resulting in LMW-PTP inactivation and inhibited cell migration. In conclusion, our findings demonstrate that a balanced redox-state is required for VEGF to facilitate reversible S-glutathionylation of LMW-PTP, FAK activation and endothelial cell migration. Shifting the redox-state to reductive stress or oxidative stress inhibited the VEGF-mediated angiogenic response.


Antioxidants & Redox Signaling | 2013

Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells.

Mohammed A. Abdelsaid; Suraporn Matragoon; Azza B. El-Remessy

AIMS Thioredoxin-interacting protein (TXNIP) contributes to cellular redox-state homeostasis via binding and inhibiting thioredoxin (TRX). Increasing evidence suggests that cellular redox homeostasis regulates vascular endothelial growth factor (VEGF)-mediated signaling. This study aims to examine the redox-dependant role of TXNIP in regulating VEGF-mediated S-glutathionylation and angiogenic signaling. TXNIP-knockout mice (TKO) or wild-type (WT) treated with the reduced glutathione (GSH)-precursor, N-acetyl cysteine (WT-NAC, 500 mg/kg) were compared to WT using hypoxia-induced neovascularization model. RESULTS In response to hypoxia, retinas from TKO and WT-NAC mice showed significant decreases in reparative revascularization and pathological neovascularization with similar VEGF expression compared with WT. VEGF failed to stimulate vascular sprouting from aortic rings of TKO compared to WT mice. TKO mice or WT+NAC experienced reductive stress as indicated by twofold increase in TRX reductase activity and fourfold increase in reduced-GSH levels compared with WT. In human microvascular endothelial (HME) cells, VEGF stimulated co-precipitation between vascular endothelial growth factor receptor 2 (VEGFR2) with low molecular weight protein tyrosine phosphatase (LMW-PTP). Silencing TXNIP expression blunted VEGF-induced oxidation of GSH and S-glutathionylation of the LMW-PTP in HME cells. These effects were associated with impaired VEGFR2 phosphorylation that culminated in inhibiting cell migration and tube formation. Overexpression of TXNIP restored VEGFR2 phosphorylation and cell migration in TKO-endothelial cells. INNOVATION TXNIP expression is required for VEGF-mediated VEGFR2 activation and angiogenic response in vivo and in vitro. TXNIP expression regulates VEGFR-2 phosphorylation via S-glutathionylation of LMW-PTP in endothelial cells. CONCLUSION Our results provide novel mechanistic insight into modulating TXNIP expression as a potential therapeutic target in diseases characterized by aberrant angiogenesis.


PLOS ONE | 2013

Diabetes and Overexpression of proNGF Cause Retinal Neurodegeneration via Activation of RhoA Pathway

Mohammed M.H. Al-Gayyar; Barbara A. Mysona; Suraporn Matragoon; Mohammed A. Abdelsaid; Mona F. El-Azab; Ahmed Y. Shanab; Yonju Ha; Sylvia B. Smith; Kathryn E. Bollinger; Azza B. El-Remessy

Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotosin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC) cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.


Life Sciences | 2014

Dual endothelin receptor antagonism with bosentan reverses established vascular remodeling and dysfunctional angiogenesis in diabetic rats: relevance to glycemic control.

Mohammed A. Abdelsaid; Jessica Kaczmarek; Maha Coucha; Adviye Ergul

AIMS We have shown that diabetes causes cerebrovascular remodeling in part by the activation of the endothelin (ET-1) system in a glucose-dependent manner. We also reported increased yet dysfunctional cerebral angiogenesis in diabetes. Here, we tested the hypothesis that dual ET-1 receptor antagonism or glycemic control can reverse already established diabetes-induced vascular remodeling and neovascularization. MAIN METHODS 18-week non-obese type-2 diabetic Goto-Kakizaki (GK) were treated with vehicle, metformin (300 mg/kg/day) or bosentan (100 mg/kg/day) for 4 weeks by oral gavage and compared to 10 and 18-weeks GK rats. Isolated middle cerebral artery (MCA) lumen diameter (LD), media thickness (MT), media:lumen (M:L) ratio, and cross-sectional area (CSA) were measured using pressurized arteriograph. Assessment of remodeling and angiogenesis in the brain parenchyma was achieved by three-dimensional reconstruction of fluorescently labeled images of the vasculature acquired by confocal microscopy, and measurement of neovascularization indices including vascular volume and surface area, branch density and tortuosity. KEY FINDINGS MCA remodeling (increased M:L ratio and CSA, but decreased LD) occurred by 18 weeks and did not progress by 22 weeks in diabetic GK rats. Metformin and bosentan partially corrected large artery remodeling. Both treatments significantly reduced all indices of neovascularization compared to untreated diabetic rats. SIGNIFICANCE Glycemic control or ET-1 antagonism can partially reverse diabetes-induced cerebrovascular remodeling and neovascularization. These results strongly suggest that either approach offers a therapeutic benefit and combination treatments need to be tested.


British Journal of Pharmacology | 2014

Deletion of thioredoxin‐interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury

M F El-Azab; B R B Baldowski; Barbara A. Mysona; Ahmed Y. Shanab; I N Mohamed; Mohammed A. Abdelsaid; Suraporn Matragoon; Kathryn E. Bollinger; A Saul; Azza B. El-Remessy

Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin‐interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration.


Journal of Lipid Research | 2015

A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase.

Ahmed S. Ibrahim; Sally Elshafey; Hassan Sellak; Khaled A. Hussein; Mohamed El-Sherbiny; Mohammed A. Abdelsaid; Nasser Rizk; Selina Beasley; Amany Tawfik; Sylvia B. Smith; Mohamed Al-Shabrawey

Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism.


Life Sciences | 2014

Late dual endothelin receptor blockade with bosentan restores impaired cerebrovascular function in diabetes

Mohammed A. Abdelsaid; Handong Ma; Maha Coucha; Adviye Ergul

AIMS Up-regulation of the endothelin (ET) system in type-2 diabetes increases contraction and decreases relaxation in basilar artery. We showed that 1) ET-receptor antagonism prevents diabetes-mediated cerebrovascular dysfunction; and 2) glycemic control prevents activation of the ET-system in diabetes. Here, our goal is to determine whether and to what extent glycemic control or ET-receptor antagonism reverses established cerebrovascular dysfunction in diabetes. MAIN METHODS Non-obese type-2 diabetic Goto-Kakizaki rats were administered either vehicle, metformin (300 mg/kg/day) or dual ET-receptor antagonist bosentan (100mg/kg) for 4-weeks starting at 18-weeks after established cerebrovascular dysfunction (n=5-6/group). Control group included vehicle-treated aged-matched Wistar rats. Blood glucose and pressure were monitored weekly. At termination, basilar arteries were collected and cumulative dose-response curves to ET-1 (0.1-500 nM), 5-HT (1-1000 nM) and acetylcholine (Ach, 0.1 nM-5 μM) were studied by wire myograph. Middle cerebral artery (MCA) myogenic reactivity and tone were measured using pressurized arteriograph. KEY FINDINGS There was no difference in ET-1 and 5-HT-mediated constrictions. Endothelium-dependent relaxation was impaired in diabetes. Bosentan improved sensitivity to Ach as well as the maximum relaxation. Myogenic-tone is decreased over the course of the disease. Both treatments improved the ability of MCAs to develop tone at 80 mm Hg and only bosentan improved the tone at higher pressures. SIGNIFICANCE These results suggest that contractile response is not affected by glycemic control or ET-receptor antagonism. Meanwhile, dual ET-receptor blockade is effective in partially improving endothelium-dependent relaxation and myogenic response in a blood pressure-independent manner even after established cerebrovascular dysfunction and offers therapeutic potential.

Collaboration


Dive into the Mohammed A. Abdelsaid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adviye Ergul

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara A. Mysona

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Maha Coucha

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiguo Li

United States Department of Veterans Affairs

View shared research outputs
Researchain Logo
Decentralizing Knowledge