Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed Falah Allawi is active.

Publication


Featured researches published by Mohammed Falah Allawi.


Water Resources Management | 2017

Optimization of Chain-Reservoirs’ Operation with a New Approach in Artificial Intelligence

Mohammad Ehteram; Mohammed Falah Allawi; Hojat Karami; Sayed-Farhad Mousavi; Mohammad Emami; Ahmed El-Shafie; Saeed Farzin

Operation of reservoirs and power plants for better management of water resources and production of hydro-electric energy has been the objective of many studies. In this research, shark algorithm is used for management of water resources and hydro-electric plants. After the introduction of this procedure, the algorithm is applied to some complex cases such as Karun-4 reservoir, 4-reservoir system, 10-reservoir system and another one including 26 power plants. In the Karun-4 case, the aim was to reduce water shortages and the results obtained from shark algorithm were in 100% compliance with the absolute optimum answer obtained from Lingo software and non-linear method. This was the best solution to the problem to date in the published researches. In the 4-reservoir system, the objective was to increase the profit from the reservoirs. The shark algorithm yielded a value of 1194.64, which is the best answer to date to the question. In regard to the energy production by the 26 power plants, the shark algorithm yielded 40% more energy, compared to genetic algorithm.


Water Resources Management | 2016

Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method

Behrooz Keshtegar; Mohammed Falah Allawi; Haitham Abdulmohsin Afan; Ahmed El-Shafie

Accurate and reliable stream-flow forecasting has a key role in water resources planning and management. Most recently, soft computing approaches have become progressively prevalent in modelling hydrological variables and most specifically stream-flows. This is due to their ability to capture the non-linearity and non-stationarity characteristics of the hydrological variables with minimum information requirements. Despite this, they present several challenges in the modelling architecture, as there is a need to establish a suitable pre-processing method for the stream-flow data and an appropriate optimization model has to be integrated in order re-adjust the weights and biases associated with the model structure. On top of that, artificial intelligent models require “trial and error” procedures in order to be properly tuned (number of hidden layers, number of neurons within the hidden layers and the type of the transfer function). However, soft computing approach experienced several problems while calibration such as over-fitting. In this research, the Response Surface Method (RSM) is improved based on high-order polynomial functions for forecasting the river stream-flow namely; High-Order Response Surface (HORS) method. Several higher orders have been examined, second, third, fourth and fifth polynomial functions in order to figure out the best fit that able to mimic the pattern of stream-flow. In order to demonstrate the effectiveness of the proposed model, monthly stream-flow time series data located in Aswan High Dam (AHD) has been examined. A detailed analysis of the overall statistical indicators revealed that the proposed method showed outstanding performance for monthly stream-flow forecasting at AHD. It could be concluded that the fifth order polynomial function outperforms the other orders of the polynomial functions especially with May model who achieved minimum MAE 0.12, NRMSE 0.07, MSE 0.03 and maximum SF and R2 (0.97, 0.99) respectively.


Water Resources Management | 2016

Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir

Mohammed Falah Allawi; Ahmed El-Shafie

Evaporation as a major meteorological component of the hydrologic cycle plays a key role in water resources studies and climate change. The estimation of evaporation is a complex and unsteady process, so it is difficult to derive an accurate physical-based formula to represent all parameters that effect on estimate evaporation. Artificial intelligence-based methods may provide reliable prediction models for several applications in engineering. In this research have been introduced twelve networks with the RBF-NN and ANFIS methods. These models have applied to prediction daily evaporation at Layang reservoir, located in the southeast part of Malaysia. The used meteorological data set to develop the models for prediction daily evaporation rate from water surface for Layang reservoir includes daily air temperature, solar radiation, pan evaporation, and relative humidity that measured at a case study for fourteen years. The obtained result denote to the superiority of the RBF-NN models on the ANFIS models. A comparison of the model performance between RBF-NN and ANFIS models indicated that RBF-NN method presents the best estimates of daily evaporation rate with the minimum MSE 0.0471 , MAE 0.0032, RE and maximum R2 0.963.


Environmental Science and Pollution Research | 2017

Heavy metal monitoring, analysis and prediction in lakes and rivers: state of the art

Adnan Elzwayie; Haitham Abdulmohsin Afan; Mohammed Falah Allawi; Ahmed El-Shafie

Several research efforts have been conducted to monitor and analyze the impact of environmental factors on the heavy metal concentrations and physicochemical properties of water bodies (lakes and rivers) in different countries worldwide. This article provides a general overview of the previous works that have been completed in monitoring and analyzing heavy metals. The intention of this review is to introduce the historical studies to distinguish and understand the previous challenges faced by researchers in analyzing heavy metal accumulation. In addition, this review introduces a survey on the importance of time increment sampling (monthly and/or seasonally) to comprehend and determine the rate of change of different parameters on a monthly and seasonal basis. Furthermore, suggestions are made for future research to achieve more understandable figures on heavy metal accumulation by considering climate conditions. Thus, the intent of the current study is the provision of reliable models for predicting future heavy metal accumulation in water bodies in different climates and pollution conditions so that water management can be achieved using intelligent proactive strategies and artificial neural network (ANN) techniques.


Natural Hazards | 2017

Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art

Nariman Valizadeh; Majid Mirzaei; Mohammed Falah Allawi; Haitham Abdulmohsin Afan; Nuruol Syuhadaa Mohd; Aini Hussain; Ahmed El-Shafie

Developing an accurate model for discharge estimation techniques of the ungauged river basin is a crucial challenge in water resource management especially in under-development regions. This article is a thorough review of the historical improvement stages of this topic to understand previous challenges that faced researchers, the shortfalls of methods and techniques, how researchers prevailed and what deficiencies still require solutions. This revision focuses on data-driven approaches and GIS-based methods that have improved the accuracy of estimation of hydrological variables, considering their advantages and disadvantages. Past studies used artificial intelligence and geo-statistical methods to forecast the runoff at ungauged river basins, and mapping the spatial distribution has been considered in this study. A recommendation for future research on the potential of a hybrid model utilizing both approaches is proposed and described.


Neural Computing and Applications | 2018

RBF-NN-based model for prediction of weld bead geometry in Shielded Metal Arc Welding (SMAW)

Ali Najah Ahmed; C.W. Mohd Noor; Mohammed Falah Allawi; Ahmed El-Shafie

Welding processes are considered as an essential component in most of industrial manufacturing and for structural applications. Among the most widely used welding processes is the shielded metal arc welding (SMAW) due to its versatility and simplicity. In fact, the welding process is predominant procedure in the maintenance and repair industry, construction of steel structures and also industrial fabrication. The most important physical characteristics of the weldment are the bead geometry which includes bead height and width and the penetration. Different methods and approaches have been developed to achieve the acceptable values of bead geometry parameters. This study presents artificial intelligence techniques (AIT): For example, radial basis function neural network (RBF-NN) and multilayer perceptron neural network (MLP-NN) models were developed to predict the weld bead geometry. A number of 33 plates of mild steel specimens that have undergone SMAW process are analyzed for their weld bead geometry. The input parameters of the SMAW consist of welding current (A), arc length (mm), welding speed (mm/min), diameter of electrode (mm) and welding gap (mm). The outputs of the AIT models include property parameters, namely penetration, bead width and reinforcement. The results showed outstanding level of accuracy utilizing RBF-NN in simulating the weld geometry and very satisfactorily to predict all parameters in comparison with the MLP-NN model.


Environmental Science and Pollution Research | 2018

Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models

Mohammed Falah Allawi; Othman Jaafar; Firdaus Mohamad Hamzah; Sharifah Mastura Syed Abdullah; Ahmed El-Shafie

Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.


Theoretical and Applied Climatology | 2018

Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region

Mohammed Falah Allawi; Othman Jaafar; Firdaus Mohamad Hamzah; Nuruol Syuhadaa Mohd; Ravinesh C. Deo; Ahmed El-Shafie

Existing forecast models applied for reservoir inflow forecasting encounter several drawbacks, due to the difficulty of the underlying mathematical procedures being to cope with and to mimic the naturalization and stochasticity of the inflow data patterns. In this study, appropriate adjustments to the conventional coactive neuro-fuzzy inference system (CANFIS) method are proposed to improve the mathematical procedure, thus enabling a better detection of the high nonlinearity patterns found in the reservoir inflow training data. This modification includes the updating of the back propagation algorithm, leading to a consequent update of the membership rules and the induction of the centre-weighted set rather than the global weighted set used in feature extraction. The modification also aids in constructing an integrated model that is able to not only detect the nonlinearity in the training data but also the wide range of features within the training data records used to simulate the forecasting model. To demonstrate the model’s efficacy, the proposed CANFIS method has been applied to forecast monthly inflow data at Aswan High Dam (AHD), located in southern Egypt. Comparative analyses of the forecasting skill of the modified CANFIS and the conventional ANFIS model are carried out with statistical score indicators to assess the reliability of the developed method. The statistical metrics support the better performance of the developed CANFIS model, which significantly outperforms the ANFIS model to attain a low relative error value (23%), mean absolute error (1.4 BCM month−1), root mean square error (1.14 BCM month−1), and a relative large coefficient of determination (0.94). The present study ascertains the better utility of the modified CANFIS model in respect to the traditional ANFIS model applied in reservoir inflow forecasting for a semi-arid region.


Water Resources Management | 2018

Synchronizing Artificial Intelligence Models for Operating the Dam and Reservoir System

Mohammed Falah Allawi; Othman Jaafar; Mohammad Ehteram; Firdaus Mohamad Hamzah; Ahmed El-Shafie

It is remarkable that several hydrological parameters have a significant effect on the reservoir operation. Therefore, operating the reservoir system is complex issue due to existing the nonlinearity hydrological variables. Hence, determining modern model has high ability in handling reservoir operation is crucial. The present study developed artificial intelligence model, called Shark Machine Learning Algorithm (SMLA) to provide optimal operational rules. The major objective for the proposed model is minimizing the deficit volume between water releases and the irrigation water demand. The current study compared the performance of the SML model with popular evolutionary computing methods, namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The proposed models have been utilized of finding the optimal policies to operate Timah Tasoh Dam, which is located in Malaysia. The study utilized considerable statistical indicators to explore the efficiency of the models. The simulation period showed that SMLA approach outperforms both of conventional algorithms. The SMLA attained high Reliability and Resilience (Rel. = 0.98%, Res. = 50%) and minimum Vulnerability (Vul. = 21.9 of demand). It is demonstrated that shark machine learning algorithm would be a promising tool in handling the long-term optimization problem in operation a reservoir system.


Environmental Earth Sciences | 2018

Operating a reservoir system based on the shark machine learning algorithm

Mohammed Falah Allawi; Othman Jaafar; Firdaus Mohamad Hamzah; Mohammad Ehteram; Md. Shabbir Hossain; Ahmed El-Shafie

The operating process of a multi-purpose reservoir needs to develop models that have the ability to overcome the challenges facing the decision makers. Therefore, the development of a mathematical optimization model is crucial for selecting the optimal policies for the reservoir operation. In the current study, the shark machine learning algorithm (SMLA) is proposed to develop an optimal rule for operating the reservoir. The SMLA began with a group of randomly produced potential solutions and later interactively executed the search for the optimal solution. The procedure for the SMLA is suitable to be applied to a reservoir system due to its ability to tackle the stochastic features of dam and reservoir systems. The major purpose of the proposed models is to generate an operation rule that could minimize the absolute value of the differences between water release and water demand. The proposed model has been examined using the data of the Aswan High Dam, Egypt as the case study. The performance of the SMLA was compared with the performance of the most widespread evolutionary algorithms, namely, the genetic algorithm (GA). Comprehensive analysis of the results was performed using three performance indicators, namely, resilience, reliability, and vulnerability. This work concluded that the performance of the SMLA model was better than the GA model in generating the optimal policy for reservoir operation. The result showed that the SMLA succeeded in providing high reliability (99.72%), significant resilience (1) and minimum vulnerability (20.7% of demand).

Collaboration


Dive into the Mohammed Falah Allawi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Firdaus Mohamad Hamzah

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Othman Jaafar

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Haitham Abdulmohsin Afan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Najah Ahmed

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adnan Elzwayie

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Aini Hussain

National University of Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge