Mohammed Khairy
University of Rhode Island
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammed Khairy.
Chemosphere | 2013
Mohammed Khairy; Rainer Lohmann
In this study, three receptor models [factor analysis/multiple linear regression (FA/MLR), positive matrix factorization (PMF) and UNMIX] were applied seasonally to investigate the source apportionment of PAHs in the atmospheric environment of Alexandria, and a lifetime cancer risk was assessed. ∑44 (gas+particle) PAH concentrations varied from 330 to 1770ngm(-3) and 170-1290ngm(-3) in the summer and winter seasons respectively. PAH concentrations at the industrial sites were significantly higher than at the traffic and residential sites during the winter season (p<0.001). Summer PAH concentrations were significantly higher than the winter season at the traffic sites (p=0.027). Results obtained from the three receptor models were comparable. Vehicle emissions, both diesel and gasoline contributed on average 36.0-49.0% and 19.0-34.0% respectively, natural gas combustion 11.0-27.0% and, during the summer only, also evaporative/uncombusted petroleum sources 8.00-18.0%. Seasonal trends were found for the gasoline emission source. Overall, PMF and UNMIX models afforded better source identification than did FA/MLR. The lifetime cancer risk assessment showed that incremental lifetime cancer risks (ILTCRs) were greater than the acceptable level of 10(-6) through dermal and ingestion routes at all the investigated sites and through the inhalation route at the industrial and traffic sites only. Total ILTCRs (6.64×10(-3)-4.42×10(-2)) indicated high potential risks to the local residents.
Environmental Science & Technology | 2012
Mohammed Khairy; Rainer Lohmann
Polyethylene samplers (PEs) were deployed at 11 locations in Alexandria, Egypt during summer and winter to test and characterize them as passive samplers for concentrations, sources, and seasonal variations of atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs). PE-air equilibrium was attained faster for a wider range of PAHs during the winter season possibly due to increased wind speeds. Calculated PE-air partitioning constants, K(PE-A), in our study [Log K(PE-A) = 0.9426 × Log K(OA) - 0.022 (n = 12, R(2) = 0.99, Std error = 0.053)] agreed with literature values within <46%. For parent (except naphthalene), mono- and dialkylated PAHs, active sampling based concentrations of PAHs were within an average factor of 1.4 (1.0-5.6) compared to the PE based values. For C(3-4) alkylated PAHs, K(PE-A) values were lower than predicted, on average by ~0.8 log units per carbon in the alkylation. Enthalpies of vaporization (ΔH(vap)) accurately corrected K(PE-A)s for temperature differences between winter and summer sampling. PAH profiles were dominated by naphthalene, phenanthrene, and alkylated phenanthrenes. Calculated diagnostic ratios indicated that PAHs originated mainly from vehicle emissions.
Environmental Science & Technology | 2014
Carrie A. McDonough; Mohammed Khairy; Derek Muir; Rainer Lohmann
Polyethylene passive samplers (PEs) were used to measure concentrations of gaseous and dissolved polycyclic aromatic hydrocarbons (PAHs) in the air and water throughout the lower Great Lakes during summer and fall of 2011. Atmospheric Σ15PAH concentrations ranged from 2.1 ng/m3 in Cape Vincent (NY) to 76.4 ng/m3 in downtown Cleveland (OH). Aqueous Σ18PAH concentrations ranged from 2.4 ng/L at an offshore Lake Erie site to 30.4 ng/L in Sheffield Lake (OH). Gaseous PAH concentrations correlated strongly with population within 3-40 km of the sampling site depending on the compound considered, suggesting that urban centers are a primary source of gaseous PAHs (except retene) in the lower Great Lakes region. The significance of distant population (within 20 km) versus local population (within 3 km) increased with subcooled liquid vapor pressure. Most dissolved aqueous PAHs did not correlate significantly with population, nor were they consistently related to river discharge, wastewater effluents, or precipitation. Air-water exchange calculations implied that diffusive exchange was a source of phenanthrene to surface waters, while acenaphthylene volatilized out of the lakes. Comparison of air-water fluxes with temperature suggested that the significance of urban centers as sources of dissolved PAHs via diffusive exchange may decrease in warmer months.
Environmental Science & Technology | 2014
Mohammed Khairy; Michael P. Weinstein; Rainer Lohmann
The bioaccumulation and biomagnification of sediment-bound hydrophobic organic contaminants (HOCs) are of major concern for environmental and human health. In dynamic estuaries, HOCs can be taken up from sediments, porewater, or the overlying water column concentrations directly or via the diet. The transfer of HOCs including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) to resident/migratory biota was investigated in 11 finfish species and blue crabs (Callinectes sapidus) in the Passaic River estuary. Concurrently, passive samplers were deployed to assess porewater and overlying water column concentrations. Biota were assigned to three trophic levels based on their tissue 15N isotope values and published life history strategies. There were no significant differences in trophic magnification factors (TMFs) calculated based on life-history scenarios, implying that the migratory species, mostly juveniles, had equilibrated with in situ sources of pollutants at the time they were sampled. Bioaccumulation factors and TMFs were >1 for most PCBs and tetra- and penta-CDD/DFs, indicating that they underwent biomagnification in the food web. All PAHs, PCB 11, and other lower chlorinated PCBs and PCDD/Fs did not magnify. Results from the analysis of HOC profiles implied that biota accumulated HOCs from sediments, porewater, and diet but not from overlying water.
Environmental Science & Technology | 2016
Ying Liu; Siyao Wang; Carrie A. McDonough; Mohammed Khairy; Derek Muir; Paul A. Helm; Rainer Lohmann
Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.
Environmental Science & Technology | 2015
Mohammed Khairy; Derek C. G. Muir; Camilla Teixeira; Rainer Lohmann
Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources.
Chemosphere | 2016
Rodrigo Ornellas Meire; Mohammed Khairy; Admir Créso Targino; Petrus Galvao; João Paulo Machado Torres; Olaf Malm; Rainer Lohmann
Low-density polyethylene (LDPE) passive samplers were deployed in upland surface waters and the overlying atmosphere during May and June 2012, to determine the transport and trends of freely dissolved and gaseous organochlorine pesticides (OCPs) along altitudinal gradients in mountain regions in south and southeast Brazil. Gaseous OCP concentrations were dominated by hexachlorobenzene (3.0-29 pg m(-3)) and endosulfans (Ʃ = α-endosulfan + β-endosulfan + endosulfan sulphate, 170-260 pg m(-3)), whereas freely dissolved endosulfans were significantly higher than all other OCPs (p < 0.001). The presence of some target pesticides at the highest elevation sites indicated their efficient high-altitude transport from regional sources. Air-water exchange gradients indicated net deposition of most volatile and recently banned OCPs (e.g., HCB, endosulfan) over Brazilian mountains. Moreover, the exposure of these sites to large-scale continental airflows with varying source contributions may partly explain the atmospheric deposition of selected OCPs over upland freshwaters at tropical and subtropical mountains sites in Brazil. These findings, coupled with LDPE passive air and water sampling measurements, point out the potential inputs from distant sources of semi-volatile chemicals to the two high-altitude sites.
Environmental Toxicology and Chemistry | 2016
Mohammed Khairy; Kirk Barrett; Rainer Lohmann
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in sediments (surface and deeper sediments) and porewater of the lower Passaic River and Newark Bay (New Jersey, USA) to apportion their sources and conduct an ecological risk assessment. Positive matrix factorization was applied to identify sources of PCDD/Fs. Five source profiles were extracted from the positive matrix factorization model applied to the sediment samples including chloranil, combustion, polychlorinated biphenyl impurities, mixed urban sources, and the historical contamination from the former Diamond Alkali plant. The ecological risk assessment was estimated using several lines of evidence depending on site-specific data (blue crab and fish samples representing different feeding habits and positions in the trophic wood web of the river). Porewater concentrations gave the best estimates of lipid concentrations especially in the blue crab samples (with an average factor difference of 3.8). Calculated hazard quotients (HQs) for the fish samples and blue crab were >1 based on the no-effect concentration and tissue screening concentration approaches. At the same time, calculated porewater toxic units were >1. Sediment concentrations exceeded the published sediment quality guidelines for the protection of fish and benthic species, indicating the existence of significant risk to the aquatic life in the Passaic River. Accordingly, further actions and control measures are needed to reduce the emission of PCDD/Fs from ongoing sources.
Science of The Total Environment | 2018
Mohammed Khairy; Rainer Lohmann
There is scant information on the presence of the polybrominated diphenyl ethers (PBDEs) and other alternative flame-retardants (NFRs) in Africa. Hence, to investigate their levels, sources, and human exposure scenarios, elevated fine dust (EFD) samples from apartments (n = 12), working places (n = 9) and cars (n = 12), floor dust (FD) samples (n = 5) and outdoor dust samples (n = 21) were collected from Alexandria, Egypt, during 2014. Gaseous concentrations were estimated using low density polyethylene sheets (n = 33 and 21 for indoor and outdoor sites, respectively). Indoor gaseous and dust PBDE (7.0-300 pg/m3; 4.0-770 ng/g), and NFR (0.40-48 pg/m3; 0.50-8.5 ng/g) concentrations were significantly higher (p = 0.004-0.02) than outdoor concentrations (PBDEs: 3.0-41 pg/m3, 1.5-195 ng/g; NFRs: 0.20-13 pg/m3, 0.50-4.0 ng/g). Median PBDE concentration in cars (210 ng/g) was higher than in apartments and working places (130 ng/g respectively). PBDE concentrations in FD were 7.0-14-folds lower than EFD concentrations. Outdoor PBDE concentrations were significantly higher (p < 0.01) at residential-industrial places with older buildings. All samples were dominated by BDE-47 and 99. HBB, BTBPE and DDC-CO were the most abundant NFRs in EFD samples. Profiles of PBDE and NFR in FD closely matched those of outdoor dust, indicating a possible carryover from the outdoor environment. Although factors such as number of electronics, construction year and floor type significantly correlated with the majority of PBDE congeners and some NFRs in apartments and working places, sources were not clearly identified for NFRs. Significant log-linear relationships were obtained between theoretical and calculated dust-air partitioning coefficients for all samples indicating an equilibrium state between dust and vapor. Low possibility of occurrence of adverse health effects was concluded, with the inhalation pathway (for adults) and dust ingestion (for children) acting as the most important exposure routes.
Environmental Pollution | 2018
Wenlu Zhao; Minggang Cai; David Adelman; Mohammed Khairy; Peter V. August; Rainer Lohmann
Narragansett Bay is a temperate estuary on the Atlantic coast of Rhode Island in the north-eastern United States, which receives organic pollutants from urban and industrial activities in its watershed, though detailed knowledge on sources and fluxes is missing. Twenty-four polyethylene passive samplers were deployed in the surface water of the watershed around Narragansett Bay during June-July of 2014, to examine the spatial variability and possible sources of priority pollutants, namely dissolved polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Dissolved ∑22PAH concentrations ranged from 3.6 to 340 ng L-1, and from 2.9 to 220 pg L-1 for ∑12PBDE. The spatial variability of the concentrations was correlated to land use pattern and population distribution, in particular with human activities within 2 km of sampling sites. River discharges derived from the concentrations of PAHs and PBDEs measured here were 10-20 times greater than their previously measured concentrations in the open waters of Narragansett Bay. These results imply that river waters are the main source of PAHs and PDBEs to the Bay and that major sink terms (e.g., sedimentation, degradation) affect their concentrations in the estuary. Predicted PAH and PBDE toxicity based on dissolved concentrations did not exceed 1 toxic unit, suggested that no toxicity occurred at the sampling sites.