Mohammed M. Safhi
Jazan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammed M. Safhi.
Neuroscience | 2012
Hayate Javed; Mohd. Moshahid Khan; Ajmal Ahmad; Kumar Vaibhav; Md. Ejaz Ahmad; Andleeb Khan; Mohammad Ashafaq; Farah Islam; Mohd. Saeed Siddiqui; Mohammed M. Safhi
The objective of the present study was to assess the neuroprotective role of rutin (vitamin P) and delineate the mechanism of action. Recent evidence indicates that rutin exhibits antioxidant potential and protects the brain against various oxidative stressors. More precisely, the aim of the present study was to examine the modulating impacts of rutin against cognitive deficits and oxidative damage in intracerebroventricular-streptozotocin (ICV-STZ)-infused rats. Rats were injected bilaterally with ICV-STZ (3 mg/kg), whereas sham rats received the same volume of vehicle. After 2 weeks of streptozotocin (STZ) infusion, rats were tested for cognitive performance using Morris water maze tasks and thereafter euthanized for further biochemical, histopathological, and immunohistochemical studies. Rutin pretreatment (25 mg/kg, orally, once daily for 3 weeks) significantly attenuated thiobarbituric acid reactive substances (TBARS), activity of poly ADP-ribosyl polymerase, and nitrite level and decreased level of reduced glutathione (GSH) and activities of its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) and catalase in the hippocampus of ICV-STZ rats. ICV-STZ rats showed significant cognitive deficits, which was improved significantly by rutin supplementation. The results indicate that rutin attenuates STZ-induced inflammation by reducing the expression of cyclooxygenase-2 (COX-2), glial fibrillary acidic protein (GFAP), interleukin-8 (IL-8), inducible nitric oxide synthase (iNOS), nuclear factor-kB, and preventing the morphological changes in hippocampus. The study thereby suggests the effectiveness of rutin in preventing cognitive deficits and might be beneficial for the treatment of sporadic dementia of Alzheimer type (SDAT).
Neuroscience | 2013
Syed Shadab Raza; Mohammad Moshahid Khan; A. Ahmad; Mohammad Ashafaq; Farah Islam; A.P. Wagner; Mohammed M. Safhi
Oxidative stress and inflammation play an integral role in the pathogenesis of cerebral ischemia that leads to a cascade of events culminating in the death of neurons and their supporting structures. The signaling pathways that link these events are not fully understood. Recent studies have demonstrated a close link between the nuclear factor-κB (NF-κB) signaling pathway and cerebral ischemia/reperfusion (I/R)-induced inflammation. Flavonoids have been suggested to exert human health benefits by anti-oxidant and anti-inflammatory mechanisms. In this study we undertook a pharmacological approach to investigate the ability of naringenin, a potent flavonoid, to prevent oxidative stress and NF-κB-mediated inflammatory brain damage in the rat model of focal cerebral I/R injury. To test this hypothesis, male Wistar rats were pretreated with naringenin once daily for 21 days and then subjected to 1h of middle cerebral artery occlusion followed by 23 h of reperfusion. Naringenin treatment successfully upregulates the antioxidant status, decreases the infarct size and lowers the levels of myeloperoxidase, nitric oxide and cytokines, besides functional recovery returned close to the baseline. Moreover, immunohistochemical and Western blot analyses clearly demonstrated that naringenin treatment limits glial activation and downregulates the NF-κB expression level and their target genes. These results show, prophylactic treatment with naringenin improved functional outcomes and abrogated the ischemic brain injury by suppressing NF-κB-mediated neuroinflammation. The present study suggests that naringenin may be used as a potential neuroprotectant in patients at high risk of ischemic stroke.
Brain Research | 2011
Syed Shadab Raza; Mohd. Moshahid Khan; Ajmal Ahmad; Mohammad Ashafaq; Gulrana Khuwaja; Rizwana Tabassum; Hayate Javed; Mohammad Saeed Siddiqui; Mohammed M. Safhi; Fakhrul Islam
Incidence of stroke is considered to be a major cause of death throughout the world. The middle cerebral artery occlusion (MCAO) for 2h followed by 22h of reperfusion model was used in male Wistar rats to study the protection of stroke by hesperidin. Hesperidin administration (50mg/kg b.wt.) once daily for 15days has improved the infarct size, reduced the neurological deficits in terms of behaviors, and protected the elevated level of thiobarbituric acid reactive species (TBARS). A significantly depleted activity of antioxidant enzymes, glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) and content of glutathione (GSH) in MCAO group were protected significantly in MCAO group pretreated with hesperidin. Moreover, inflammatory mediators like TNF-α, IL-1β levels, expression of iNOS and glial fibrillary acidic protein (GFAP) were significantly attenuated in H+MCAO group as compared to MCAO group. In conclusion, prophylactic treatment with hesperidin ameliorated the functional and histological outcomes with elevated endogenous antioxidants status as well as reduced induction of proinflammatory cytokines in MCA occluded rat. We theorized that hesperidin is among the pharmacological agents that reduce free radicals and its associated inflammation and have been found to limit the extent of brain damage following stroke.
Brain Research | 2011
Hayate Javed; Mohd. Moshahid Khan; Andleeb Khan; Kumar Vaibhav; Ajmal Ahmad; Gulrana Khuwaja; Md. Ejaz Ahmed; Syed Shadab Raza; Mohammad Ashafaq; Rizwana Tabassum; M. Saeed Siddiqui; Omar M. A. El-Agnaf; Mohammed M. Safhi; Fakhrul Islam
S-allyl cysteine (SAC), a sulfur containing amino acid derived from garlic, has been reported to have antioxidant, anti-cancer, antihepatotoxic and neurotrophic activity. This study was designed to examine the pre-treatment effects of SAC on cognitive deficits and oxidative damage in the hippocampus of intracerebroventricular streptozotocin (ICV-STZ)-infused mice. Mice pre-treated with SAC (30mg/kg) and vehicle (intraperitoneal; once daily for 15days) were bilaterally injected with ICV-STZ (2.57mg/kg body weight), whereas sham rats received the same volume of vehicle. The pre-treatment of this drug to Swiss albino mice has prevented the cognitive and neurobehavioral impairments. An increased latency and path length were observed in lesion, i.e. streptozotocin (STZ) group as compared to sham group and these were protected significantly in STZ group pre-treated with SAC. Levels of reduced glutathione (GSH) and its dependent enzymes (Glutathione peroxidase [GPx] and glutathione reductase [GR]) were decreased in STZ group as compared to sham group and pre-treatment of STZ group with SAC has protected their activities significantly. Conversely, the elevated level of thiobarbituric acid reactive substances (TBARS) in STZ group was attenuated significantly in SAC pre-treated group when compared with STZ lesioned group. Apoptotic parameters like DNA fragmentation, expression of Bcl2 and p53 were protected by the pre-treatment of SAC against STZ induced cognitive impairment. This study concludes that intervention of SAC could prevent free radicals associated deterioration of cognitive functions and neurobehavioral activities.
Nutrition Research | 2012
Mohammad Ashafaq; Mohd. Moshahid Khan; Syed Shadab Raza; Ajmal Ahmad; Gulrana Khuwaja; Hayate Javed; Andleeb Khan; Farah Islam; M. Saeed Siddiqui; Mohammed M. Safhi; Fakhrul Islam
Oxidative stress and inflammatory damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The present study examined the hypothesis that S-allyl cysteine (SAC), organosulfur compounds found in garlic extract, would reduce oxidative stress-associated brain injury after middle cerebral artery occlusion (MCAO). To test this hypothesis, male Wistar rats were subjected to MCAO for 2 hours and 22-hour reperfusion. S-allyl cysteine was administered (100 mg/kg, b.wt.) intraperitoneally 30 minutes before the onset of ischemia and after the ischemia at the interval of 0, 6, and 12 hours. After 24 hours of reperfusion, rats were tested for neurobehavioral activities and were killed for the infarct volume, estimation of lipid peroxidation, glutathione content, and activity of antioxidant enzymes (glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase). S-allyl cysteine treatment significantly reduced ischemic lesion volume, improved neurologic deficits, combated oxidative loads, and suppressed neuronal loss. Behavioral and biochemical alterations observed after MCAO were further associated with an increase in glial fibrillary acidic protein and inducible nitric oxide expression and were markedly inhibited by the treatment with SAC. The results suggest that SAC exhibits exuberant neuroprotective potential in rat ischemia/reperfusion model. Thus, this finding of SAC-induced adaptation to ischemic stress and inflammation could suggest a novel avenue for clinical intervention during ischemia and reperfusion.
Brain Research | 2011
Gulrana Khuwaja; Mohd. Moshahid Khan; Tauheed Ishrat; Ajmal Ahmad; Syed Shadab Raza; Mohammad Ashafaq; Hayate Javed; M. Badruzzaman Khan; Andleeb Khan; Kumar Vaibhav; Mohammed M. Safhi; Fakhrul Islam
Curcumin, the active principle of turmeric used in Indian curry is known for its antitumor, antioxidant, antiarthritic, anti-ischemic and anti-inflammatory properties and might inhibit the accumulation of destructive beta-amyloid in the brains of Alzheimers disease patients. A Parkinsonian model in rats was developed by giving 6-hydroxydopamine (10 μg/2 μl in 0.1% ascorbic acid-saline) in the right striatum. After 3 weeks of lesioning, the behavior activities (rotarod, narrow beam test, grip test and contra-lateral rotations) were increased in a lesioned group as compared to a sham group and these activities were protected significantly with the pretreatment of curcumin. A significant protection on lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, tyrosine hydroxylase and D(2) receptor binding was observed in the striatum of lesioned group animals pretreated with 80 mg/kg body weight of curcumin for 21 days as compared to lesion group animals. No significant alterations on behavior and biochemical parameters were observed in sham group animals and the animals of sham group pretreated with curcumin. This study indicates that curcumin, which is an important ingredient of diet in India and also used in various systems of indigenous medicine, is helpful in preventing Parkinsonism and has therapeutic potential in combating this devastating neurologic disorder.
Journal of the Neurological Sciences | 2011
Syed Shadab Raza; Mohd. Moshahid Khan; Mohammad Ashafaq; Ajmal Ahmad; Gulrana Khuwaja; Andleeb Khan; Mohammad Saeed Siddiqui; Mohammed M. Safhi; Fakhrul Islam
Cerebral stroke is the third largest cause of death and the severe leading cause of disability, thus have astronomical financial and social burden worldwide. Accumulated evidence suggests that ROS can be scavenged through utilizing natural antioxidant compounds present in foods and medicinal plants. In this study, we examined whether silymarin, an antioxidant, present in the milk of thistle can prevent or slowdown neuronal injury in focal cerebral ischemia. Male Wistar rats were pre-treated with silymarin (200mg/kg body weight, dissolved in 0.3 % sodium carboxymethyl cellulose, once orally) for 15 days. On day 16, they underwent a transient 2h suture-occlusion of the middle cerebral artery followed by 22 h of reperfusion. Rats were tested for neurobehavioral activity after 22 h reperfusion. Silymarin was found to be successful in upregulating the antioxidant status and lowering the apoptotic responses, and functional recovery returned close to the baseline. This study revealed that silymarin, a naturally occurring flavone from the milk thistle (Silybum marianum), may be helpful in slowing down the progression of neurodegeneration in focal cerebral ischemia. These results suggest that the neuroprotective potential of silymarin is mediated through its anti-oxidative and anti-apoptotic properties.
Neurochemistry International | 2013
Md. Ejaz Ahmed; Mohd. Moshahid Khan; Hayate Javed; Kumar Vaibhav; Andleeb Khan; Rizwana Tabassum; Mohammad Ashafaq; Farah Islam; Mohammed M. Safhi; Fakhrul Islam
Alzheimers disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20mg/kgb wt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3mg/kgb wt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimers type (SDAT).
Journal of Nutritional Biochemistry | 2013
Pallavi Shrivastava; Kumar Vaibhav; Rizwana Tabassum; Andleeb Khan; Tauheed Ishrat; Mohd. Moshahid Khan; Ajmal Ahmad; Farah Islam; Mohammed M. Safhi; Fakhrul Islam
In the present study, we examined the molecular mechanism by which Piperine (bioactive compound of Piper nigrum) inhibits neuronal cell apoptosis. We further investigated the anti-inflammatory effect of Piperine on 6-OHDA induced Parkinsons disease. Consistent with its antioxidant properties, Piperine (10 mg/kg bwt) reduced 6-OHDA-induced lipid peroxidation and stimulated glutathione levels in striatum of rats. Furthermore, Piperine treatment diminished cytochrome-c release from mitochondria and reduced caspase-3 and caspase-9 activation induced by 6-OHDA. Treatment with Piperine markedly inhibited poly(ADP-ribose) polymerase activation, pro-apoptotic Bax levels and elevation of Bcl-2 levels. Piperine reduces contralateral rotations induced by apomorphine. Further narrow beam test and rotarod also showed improvement in motor coordination and balance behavior in rats treated with Piperine. In addition Piperine depletes inflammatory markers, TNF-α and IL-1β in 6-OHDA-induced Parkinsons rats. We propose that, in addition to its antioxidant properties Piperine exerts a protective effect via anti-apoptotic and anti-inflammatory mechanism on 6-OHDA induced Parkinsons disease.
Journal of the Neurological Sciences | 2015
Hayate Javed; Kumar Vaibhav; M. Ejaz Ahmed; Andleeb Khan; Rizwana Tabassum; Farah Islam; Mohammed M. Safhi; Fakhrul Islam
Recent attention is given to the influence of dietary supplementation on health and mental well-being. Oxidative stress is associated with many diseases including neurodegenerative disorders. Dietary flavonoids exert chemopreventive and neuroprotective effects and comprise the most common group of plant polyphenols that provide much of the flavour and colour of the vegetables and fruits. Hesperidin is a flavanone glycoside found abundantly in citrus fruits, has been reported to have antioxidant, hypolipidaemic, analgesic and anti-hypertensive activity. Pretreatment of hesperidin (100 and 200mg/kg body weight orally once daily for 15 days) to Swiss male albino mice has prevented the cognitive impairment. The cognitive impairment was developed by giving single intracerebroventricular-streptozotocin (ICV-STZ) injection (2.57 mg/kg body weight each side) bilaterally. Hesperidin pretreatment improved memory consolidation process as tested by Morris water maze possibly through modulation of acetylcholine esterase activity (AChE). Moreover, hesperidin attenuated the depleted content of reduced glutathione (GSH) and elevated level of thiobarbituric acid reactive substances (TBARS) and also augmented lipid alteration significantly following ICV-STZ injection. We also demonstrated that the flavonoid hesperidin modulates neuronal cell death by inhibiting the overexpression of inflammatory markers like nuclear factor κB, inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein positive astrocytes. The results from the present study open the possibility of using flavonoids for potential new therapeutic strategies for sporadic dementia of Alzheimers disease.