Mohammed
Universiti Malaysia Perlis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammed.
Journal of Physics: Conference Series | 2017
I A S Salem; A R Rozyanty; Bashir O. Betar; Tijjani Adam; Mohammed Mohammed; A M Mohammed
In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. The Fourier transform infrared (FT-IR) spectra of kenaf fiber shows high intensity of the peak around 3300-3400 cm-1, which is attributed to the hydrogen bonded O-H stretching. However, the treated kenaf fiber with stearic acid shows the elimination of O-H group and this peak is vanished. This is due to the reaction of (-COOH) group of stearic with (-OH) group of kenaf fiber. The results of water absorption study revealed that increasing the loading of KF in the composite will result is increasing the tendency to absorb water. However, the absorption was significantly decreased after treatment with stearic acid as well as the time to reach to the equilibrium state.
Journal of Physics: Conference Series | 2017
A Alnaid; N.Z. Noriman; Omar S. Dahham; R Hamzah; Tijjani Adam; M N Al-Samarrai; Mohammed Mohammed; U A A Azlan
In this research, the effects of Rice Straw (RS) reinforced Standard Malaysian Rubber (SMRL) on curing characteristics, tensile properties and physical properties were investigated. All compounds were prepared using two roll mill at five different RS loading (10, 20, 30, 40, 50 phr). In addition, two different size of RS, fine size (FS) at 300 μm and coarse size (CS) at 10 mm were used. The properties such as cure characteristics, tensile properties and physical properties were determined. Results indicated that the fine size of RS filled SMRL contributed to the better properties such as tensile, hardness and crosslink density compare to coarser size of RS filled SMRL at same loading.
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Tijjani Adam; B. Basri; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order to valid the device capabilities for detecting development. The lowest concentration 1u2005µM HPV DNA probe can detect is 0.1u2005nM HPV target DNA.Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Tijjani Adam; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1u2005nM to 1u2005µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1u2005nM to 1u2005µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screen...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Neesyan A; L David Rajah; Tijjani Adam; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
The usage of thick silicon substrates is widespread in electronic industries todays, silicon is the most important material in the semiconductor industries due to its excellent electrical, mechanical and chemical properties. Due to it being inert at room temperature and having anisotropic properties (electrical, mechanical chemical), silicon plays an important role in micro-electro-mechanical systems (MEMS) application. However, atomic interaction becoming complicated as the number of electrons increases. Atomic interaction beyond the hydrogen atom is indeed complex but quite possible by Schrodinger equation. Therefore, combination of models to explain atomic interaction via density functional theory, Kohn Sham and generalized gradient approximation is proposed. It its expected that the SiNW will show band gap transition with the decreasing size and the band gap properties under inter atomic stress. With this, it is possible to determine the atomic structure of nanowire fundamental behavior. Thus, Based o...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Tijjani Adam; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
The principle of magnetic carrier is a medium for transferring information by sending the drug to the specific part to kill tumor cells. Generally, there are seven stages of cancer. Most of the patient with cancer can only be detected when reaches stage four. At that stage, the cancer is difficult to destroy or to cure. Comparing to the nearly stage, there are probability to destroy tumor cell completely by sending the drug through magnetic carrier directly to nerve. Another way to destroyed tumor completely is by using Deoxyribonucleic acid (DNA). This project is about the simulation study based on magnetic carrier substances. The COMSOL multiphysic software is used in this project. The simulation model represents a permanent magnet, blood vessel, surrounding tissues and air in 2D. Based on result obtained, the graph shown during sending the magnetic flux is high. However, as its carry information the magnetic flux reducess from the above, the move from 0m until 0.009u2005m it become the lowers and start increase the flux from this until maximum at 0.018m. This is due the fact that carrier start to increase after because the low information is gradually reduce until 0.018m.The principle of magnetic carrier is a medium for transferring information by sending the drug to the specific part to kill tumor cells. Generally, there are seven stages of cancer. Most of the patient with cancer can only be detected when reaches stage four. At that stage, the cancer is difficult to destroy or to cure. Comparing to the nearly stage, there are probability to destroy tumor cell completely by sending the drug through magnetic carrier directly to nerve. Another way to destroyed tumor completely is by using Deoxyribonucleic acid (DNA). This project is about the simulation study based on magnetic carrier substances. The COMSOL multiphysic software is used in this project. The simulation model represents a permanent magnet, blood vessel, surrounding tissues and air in 2D. Based on result obtained, the graph shown during sending the magnetic flux is high. However, as its carry information the magnetic flux reducess from the above, the move from 0m until 0.009u2005m it become the lowers and start inc...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Mohammad Razif Bin Mustafa; Th. S. Dhahi; Nuri. A. K. H. Ehfaed; Tijjani Adam; U. Hashim; N. Azizah; Mohammed Mohammed; N.Z. Noriman
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Mohamed Jamal Bin Amanullah; Tijjani Adam; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
Silicon is the most important material in semiconductor industry. As nano-devices shrink in size, the conventional understanding of electronic devices are no longer applicable as quantum effects start to play an important role for the behavior of the device. At the same time, when structures are approaching atomic scale, the precise fabrication by photo-lithographic techniques, for example, are not even applicable. Very often, the fabrication of regular structures rely on self-assembly is susceptible to fluctuations. Therefore, a deeper understanding to exploit the quantum behavior of nano-devices and precise control of building nano-structures are highly desired. Thus, genetic algorithm based on first principle analysis to optimize silicon nanowires electron and elastic properties is proposed. One nanometer (1nm) surface reconstruction by using genetic algorithm combined with ab-initio calculation is proposed. The SiNWs behavior to quasi-direct band gap transition with the decrease size and the band gap ...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Mohammed Mohammed; A. R. Rozyanty; Tijjani Adam; Bashir O. Betar
In this research, we prepared pure kenaf composites and kenaf/glass fibre hybrid composites using the hand lay-up procedure. Also, we studied the weather effects on the mechanical, morphological and thermal properties of the pure kenaf and the kenaf/glass fibre hybrid composites. Before the weathering conditions, we determined that the tensile strength of the kenaf /glass fibre hybrid composite was 70.9u2005MPa, while the tensile modulus was 3030u2005MPa. However, during the first weathering month, there was a decrease in the tensile modulus values, which further decreased as the weathering continued. Also, there was a significant difference in the tensile modulus reduced values between the pure kenaf and the glass fibre-reinforced kenaf composites, which indicated that the glass fibre was a good reinforcement option, and could be successfully used for producing high performing composites. Based on the flexural strength results obtained, it could be noted that the natural fibre composites could not withstand the ...
3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017) | 2017
Tijjani Adam; Th. S. Dhahi; Mohammed Mohammed; U. Hashim; N.Z. Noriman; Omar S. Dahham
An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical ...