Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed N. Baeshen is active.

Publication


Featured researches published by Mohammed N. Baeshen.


Biotechnology Advances | 2014

Microalgal lipids biochemistry and biotechnological perspectives

Stamatia Bellou; Mohammed N. Baeshen; Ahmed M. Elazzazy; Dimitra Aggeli; Fotoon Sayegh; George Aggelis

In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties. Therefore, algal production systems need to be improved and harvesting systems need to be more effective in order for their industrial applications to become more competitive and economically viable. Besides, a reduction of the production cost of microalgal lipids can be achieved by combining lipid production with other commercial applications. The combined production of bioactive products and lipids, when possible, can support the commercial viability of both processes. Hydrophobic compounds can be extracted simultaneously with lipids and then purified, while hydrophilic compounds such as proteins and sugars may be extracted from the defatted biomass. The microalgae also have applications in environmental biotechnology since they can be used for bioremediation of wastewater and to monitor environmental toxicants. Algal biomass produced during wastewater treatment may be further valorized in the biofuel manufacture. It is anticipated that the high microalgal lipid potential will force research towards finding effective ways to manipulate biochemical pathways involved in lipid biosynthesis and towards cost effective algal cultivation and harvesting systems, as well.


Current Opinion in Biotechnology | 2016

Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content

Stamatia Bellou; Irene-Eva Triantaphyllidou; Dimitra Aggeli; Ahmed M. Elazzazy; Mohammed N. Baeshen; George Aggelis

In this short review, we summarize the latest research in the production of polyunsaturated microbial oils that are of interest in food technology. The current research targets the productivity of oleaginous microorganisms, as well as the biosynthesis of particular polyunsaturated fatty acids (PUFAs). The most important efforts target the efficiency of the oleaginous machinery, via overexpression of key-enzymes involved in lipid biosynthesis, as well as the minimization of lipid degradation, by repressing genes involved in the β-oxidation pathway. The production of specific PUFAs is approached by homologous or heterologous expression of specific desaturases and elongases involved in PUFA biosynthesis in oleaginous microorganisms. New perspectives, such as the production of triacylglycerols of specific structure and the employment of adaptive experimental evolution for creating robust oleaginous strains able to produce PUFAs are also discussed.


Microbial Cell Factories | 2014

Cell factories for insulin production

Nabih A. Baeshen; Mohammed N. Baeshen; Abdullah Z. Sheikh; Roop Singh Bora; Mohamed Morsi Ahmed; Hassan A. I. Ramadan; Kulvinder Singh Saini; Elrashdy M. Redwan

The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin.


Journal of Microbiology and Biotechnology | 2015

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

Mohammed N. Baeshen; Ahmed M. Al-Hejin; Roop Singh Bora; Mohamed Morsi Ahmed; Hassan A. I. Ramadan; Kulvinder Singh Saini; Nabih A. Baeshen; Elrashdy M. Redwan

Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, cost-effectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.


BMC Plant Biology | 2014

The temporal foliar transcriptome of the perennial C3 desert plant Rhazya stricta in its natural environment.

Steven A Yates; Igor Chernukhin; Ruben Alvarez-Fernandez; Ulrike Bechtold; Mohammed N. Baeshen; Nabih A. Baeshen; Mohammad Z Mutwakil; Jamal S. M. Sabir; Tracy Lawson; Philip M. Mullineaux

BackgroundThe perennial species Rhazya stricta (R. stricta) grows in arid zones and carries out typical C3 photosynthesis under daily extremes of heat, light intensity and low humidity. In order to identify processes attributable to its adaptation to this harsh environment, we profiled the foliar transcriptome of apical and mature leaves harvested from the field at three time periods of the same day.ResultsNext generation sequencing was used to reconstruct the transcriptome and quantify gene expression. 28018 full length transcript sequences were recovered and 45.4% were differentially expressed (DE) throughout the day. We compared our dataset with microarray experiments in Arabidopsis thaliana (Arabidopsis) and other desert species to identify trends in circadian and stress response profiles between species. 34% of the DE genes were homologous to Arabidopsis circadian-regulated genes. Independent of circadian control, significant overlaps with Arabidopsis genes were observed only with heat and salinity/high light stress-responsive genes. Also, groups of DE genes common to other desert plants species were identified. We identified protein families specific to R. stricta which were found to have diverged from their homologs in other species and which were over -expressed at midday.ConclusionsThis study shows that temporal profiling is essential to assess the significance of genes apparently responsive to abiotic stress. This revealed that in R. stricta, the circadian clock is a major regulator of DE genes, even of those annotated as stress-responsive in other species. This may be an important feature of the adaptation of R. stricta to its extreme but predictable environment. However, the majority of DE genes were not circadian-regulated. Of these, some were common to other desert species and others were distinct to R. stricta, suggesting that they are important for the adaptation of such plants to arid environments.


Scientific Reports | 2016

The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae

Jamal S. M. Sabir; Robert K. Jansen; Dhivya Arasappan; Virginie Calderon; Emmanuel Noutahi; Chunfang Zheng; Seongjun Park; Meshaal J. Sabir; Mohammed N. Baeshen; Nahid H. Hajrah; Mohammad A. Khiyami; Nabih A. Baeshen; Abdullah Y. Obaid; Abdulrahman L. Al-Malki; David Sankoff; Nadia El-Mabrouk; Tracey A. Ruhlman

Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues.


Biotechnology & Biotechnological Equipment | 2016

Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens

Raziuddin Khan; Mohammed N. Baeshen; Kulvinder Singh Saini; Roop Singh Bora; Ahmed M. Al-Hejin; Nabih A. Baeshen

ABSTRACT Bacterial resistance to antibiotics, first a major concern in the 1960s, has re-emerged worldwide over the last 20 years. The World Health Organization (WHO) and other health organizations have, therefore, declared ‘war’ against human microbial pathogens, particularly hospital-acquired infections, and have made drug discovery a top priority for these diseases. Because these bacteria are refractory to conventional chemotherapy, medicinal and herbal plants used in various countries should be assessed for their therapeutic potential; these valuable bio-resources are a reservoir of complex bioactive molecules. Earlier studies from our laboratory on Rhazya stricta, a native herbal shrub of Asia, have shown that this plant has a number of therapeutic properties. In this study, we evaluated the antimicrobial activities of various concentrations of five solvent extracts (aqueous alkaloid, aqueous non-alkaloid, organic alkaloid, organic non-alkaloid and whole aqueous extracts) derived from R. stricta leaves against several multidrug-resistant, human-pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase-positive Escherichia coli. In vitro, molecular and electron microscopy analyses conclusively demonstrated the antimicrobial effects of these extracts against a panel of Gram-negative and Gram-positive bacteria. The organic alkaloid extract was the most effective against E. coli and MRSA, resulting in cell membrane disruption visible with transmission electron microscopy. In the near future, we intend to further focus and delineate the molecular mechanism-of-action for specific alkaloids of R. stricta, particularly against MRSA.


Environmental Microbiology | 2016

Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota

Shazia N. Aslam; Alex J. Dumbrell; Jamal S. M. Sabir; Mohammed Z. Mutwakil; Mohammed N. Baeshen; Salah Abo-Aba; David R Clark; Steven A Yates; Nabih A. Baeshen; Graham J. C. Underwood; Terry J. McGenity

Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water.


Standards in Genomic Sciences | 2015

High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama

Rui Tian; Matthew A. Parker; Rekha Seshadri; T. B. K. Reddy; Victor Markowitz; Natalia Ivanova; Amrita Pati; Tanja Woyke; Mohammed N. Baeshen; Nabih A. Baeshen; Nikos C. Kyrpides; Wayne Reeve

Bradyrhizobiumsp. Tv2a.2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Tachigali versicolor collected in Barro Colorado Island of Panama. Here we describe the features of Bradyrhizobiumsp. Tv2a.2, together with high-quality permanent draft genome sequence information and annotation. The 8,496,279 bp high-quality draft genome is arranged in 87 scaffolds of 87 contigs, contains 8,109 protein-coding genes and 72 RNA-only encoding genes. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.


Standards in Genomic Sciences | 2015

High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica.

Rui Tian; Matthew A. Parker; Rekha Seshadri; T. B. K. Reddy; Victor Markowitz; Natalia Ivanova; Amrita Pati; Tanja Woyke; Mohammed N. Baeshen; Nabih A. Baeshen; Nikos C. Kyrpides; Wayne Reeve

Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

Collaboration


Dive into the Mohammed N. Baeshen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roop Singh Bora

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge