Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed Taouis is active.

Publication


Featured researches published by Mohammed Taouis.


Diabetes | 2013

Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4

Yacir Benomar; Arieh Gertler; Pamela De Lacy; Delphine Crépin; Hassina Ould Hamouda; Laure Riffault; Mohammed Taouis

Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal–related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH2-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal.


Journal of Nutritional Biochemistry | 2009

Adiponectin and energy homeostasis: consensus and controversy

Sami Dridi; Mohammed Taouis

Adiponectin regulates energy homeostasis through the modulation of glucose and fatty acid metabolism in peripheral tissues. However, its central effect on energy balance remains unclear and controversial. Despite the disparate data, recent advances in our understanding of the signal transduction mechanisms used by adiponectin in the periphery and in the hypothalamus suggest that intracellular cross-talk between adiponectin, leptin and insulin may occur at several levels. The present review will summarize recent reports describing the peripheral and central effects of adiponectin and discuss progress concerning its molecular mechanisms. We will also particularly focus on apparent controversies and related mechanisms associated with the central effects of adiponectin on energy homeostasis.


Molecular and Cellular Endocrinology | 2014

The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment

Delphine Crépin; Yacir Benomar; Laure Riffault; Hamza Amine; Arieh Gertler; Mohammed Taouis

Early in life, leptin plays a crucial role in hypothalamic neural organization. Leptin, most likely, controls neural gene expression conferring then specific phenotype regarding energy homeostasis. MicroRNAs are new regulators for several physiological functions, including the regulation of metabolism. However, the impact of leptin on hypothalamic microRNA patterns remains unknown. Here, we demonstrate that miR-200a, miR-200b and miR-429 are up-regulated in the hypothalamus of genetically obese and leptin deficient ob/ob mice. Leptin treatment down-regulates these miRNAs in ob/ob hypothalamus. The hypothalamic silencing of miR-200a increased the expression level of leptin receptor and insulin receptor substrate 2, reduced body weight gain, and restored liver insulin responsiveness. In addition, the overexpression of pre-miR-200a in a human neuroblastoma cell line impaired insulin and leptin signaling. These findings link the alteration of leptin and insulin signaling to the up-regulation of hypothalamic miR-200a which could be a new target for treatment of obesity.


Journal of Endocrinology | 2013

Early leptin blockade predisposes fat-fed rats to overweight and modifies hypothalamic microRNAs

Charlotte Benoit; Hassina Ould-Hamouda; Delphine Crépin; Arieh Gertler; Laurence Amar; Mohammed Taouis

Perinatal leptin impairment has long-term consequences on energy homeostasis leading to body weight gain. The underlying mechanisms are still not clearly established. We aimed to analyze the long-term effects of early leptin blockade. In this study, newborn rats received daily injection of a pegylated rat leptin antagonist (pRLA) or saline from day 2 (d2) to d13 and then body weight gain, insulin/leptin sensitivity, and expression profile of microRNAs (miRNAs) at the hypothalamic level were determined at d28, d90, or d153 (following 1 month of high-fat diet (HFD) challenge). We show that pRLA treatment predisposes rats to overweight and promotes leptin/insulin resistance in both hypothalamus and liver at adulthood. pRLA treatment also modifies the hypothalamic miRNA expression profile at d28 leading to the upregulation of 34 miRNAs and the downregulation of four miRNAs. For quantitative RT-PCR confirmation, we show the upregulation of rno-miR-10a at d28 and rno-miR-200a, rno-miR-409-5p, and rno-miR-125a-3p following HFD challenge. Finally, pRLA treatment modifies the expression of genes involved in energy homeostasis control such as UCPs and AdipoRs. In pRLA rat muscle, Ucp2/3 and Adipor1/r2 are upregulated at d90. In liver, pRLA treatment upregulates Adipor1/r2 following HFD challenge. These genes are known to be involved in insulin resistance and type 2 diabetes. In conclusion, we demonstrate that the impairment of leptin action in early life promotes insulin/leptin resistance and modifies the hypothalamic miRNA expression pattern in adulthood, and finally, this study highlights the potential link between hypothalamic miRNA expression pattern and insulin/leptin responsiveness.


Journal of Endocrinology | 2007

The regulation of stearoyl-CoA desaturase gene expression is tissue specific in chickens.

Sami Dridi; Mohammed Taouis; Arieh Gertler; Eddy Decuypere; Johan Buyse

Emerging evidence suggests a potential role of stearoyl-CoA desaturase (SCD)-1 in the control of body weight and energy homeostasis. The present study was conducted to investigate the effects of several energy balance-related factors (leptin, cerulenin, food deprivation, genotype, and gender) on SCD gene expression in chickens. In experiment 1, 6-week-old female and male broiler chickens were used. In experiment 2, two groups of 3-week-old broiler chickens were continuously infused with recombinant chicken leptin (8 micro g/kg/h) or vehicle for 6 h. In experiment 3, two groups of 2-week-old broiler chickens received i.v. injections of cerulenin (15 mg/kg) or vehicle. In experiment 4, two broiler chicken lines (fat and lean) were submitted to two nutritional states (food deprivation for 16 or 24 h and feeding ad libitum). At the end of each experiment, tissues were collected for analyzing SCD gene expression. Data from experiment 1 showed that SCD is ubiquitously expressed in chicken tissues with highest levels in the proventriculus followed by the ovary, hypothalamus, kidney, liver, and adipose tissue in female, and hypothalamus, leg muscle, pancreas, liver, and adipose tissue in male. Female chickens exhibited significantly higher SCD mRNA levels in kidney, breast muscle, proventriculus, and intestine than male chickens. However, hypothalamic SCD gene expression was higher in male than in female (P < 0.05). Leptin increased SCD gene expression in chicken liver (P < 0.05), whereas cerulenin decreased SCD mRNA levels in muscle. Both leptin and cerulenin significantly reduced food intake (P < 0.05). Food deprivation for either 16 or 24 h decreased the hepatic SCD gene expression in fat line and lean line chickens compared with their fed counterparts (P < 0.05). The hypothalamic SCD mRNA levels were decreased in both lines only after 24 h of food deprivation (P < 0.05). In conclusion, SCD is ubiquitously expressed in chickens and it is regulated by leptin, cerulenin, nutritional state, and gender in a tissue-specific manner.


Chemical Research in Toxicology | 2010

Distribution of Soluble Uranium in the Nuclear Cell Compartment at Subtoxic Concentrations

Caroline Rouas; H. Bensoussan; David Suhard; Christine Tessier; Line Grandcolas; François Rebiere; Isabelle Dublineau; Mohammed Taouis; Marc Pallardy; Philippe Lestaevel; Yann Gueguen

Uranium is naturally found in the environment, and its extensive use results in an increased risk of human exposure. Kidney cells have mainly been used as in vitro models to study effects of uranium exposure, and very little about the effects on other cell types is known. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in human kidney (HEK-293), liver (HepG2), and neuronal (IMR-32) cell lines. Cytotoxicity studies showed that these cell lines reacted in a roughly similar manner to depleted uranium exposure, responding at a cytotoxicity threshold of 300-500 μM. Uranium was localized in cells with secondary ion mass spectrometry technology. Results showed that uranium precipitates at subtoxic concentrations (>100 μM). With this approach, we were able for the first time to observe the soluble form of uranium in the cell at low concentrations (10-100 μM). Moreover, this technique allows us to localize it mainly in the nucleus. These innovative results raise the question of how uranium penetrates into cells and open new perspectives for studying the mechanisms of uranium chemical toxicity.


Molecular and Cellular Endocrinology | 2012

Hypothalamic serotonin-insulin signaling cross-talk and alterations in a type 2 diabetic model

Ioannis Papazoglou; Flavien Berthou; Nicolas Vicaire; Eirini M. Markaki; Danielle Bailbe; Bernard Portha; Mohammed Taouis; Kyriaki Gerozissis

Serotonin and insulin are key regulators of homeostatic mechanisms in the hypothalamus. However, in type 2 diabetes, the hypothalamic responsiveness to serotonin is not clearly established. We used a diabetic model, the Goto Kakizaki (GK) rats, to explore insulin receptor expression, insulin and serotonin efficiency in the hypothalamus and liver by means of Akt phosphorylation. Insulin or dexfenfluramine (stimulator of serotonin) treatment induced Akt phosphorylation in Wistar rats but not in GK rats that exhibit down-regulated insulin receptor. Studies in a neuroblastoma cell line showed that serotonin-induced Akt phosphorylation is PI3-kinase dependent. Finally, in response to food intake, hypothalamic serotonin release was reduced in GK rats, indicating impaired responsiveness of this neurotransmitter. In conclusion, hypothalamic serotonin as insulin efficiency is impaired in diabetic GK rats. The insulin-serotonin cross-talk and impairment observed is one potential key modification in the brain during the onset of diabetes.


PLOS ONE | 2011

Unexpected long-term protection of adult offspring born to high-fat fed dams against obesity induced by a sucrose-rich diet.

Odile Couvreur; Jacqueline Ferezou; Daniel Gripois; Colette Sérougne; Delphine Crépin; Alain Aubourg; Arieh Gertler; Claire-Marie Vacher; Mohammed Taouis

Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet.


Diabetes | 2016

Central Resistin/TLR4 impairs adiponectin signaling contributing to insulin and FGF21 resistance

Yacir Benomar; Hamza Amine; Delphine Crépin; Al Rifai S; Laure Riffault; Arieh Gertler; Mohammed Taouis

Adiponectin, an insulin-sensitizing hormone, and resistin, known to promote insulin resistance, constitute a potential link between obesity and type 2 diabetes. In addition, fibroblast growth factor (FGF)21 has effects similar to those of adiponectin in regulating glucose and lipid metabolism and insulin sensitivity. However, the interplay between adiponectin, FGF21, and resistin signaling pathways during the onset of insulin resistance is unknown. Here, we investigated whether central resistin promotes insulin resistance through the impairment of adiponectin and FGF21 signaling. We show that chronic intracerebroventricular resistin infusion downregulated both hypothalamic and hepatic APPL1, a key protein in adiponectin signaling, associated with decreased Akt-APPL1 interaction and an increased Akt association with its endogenous inhibitor tribbles homolog 3. Resistin treatment also decreased plasma adiponectin levels and reduced both hypothalamic and peripheral expression of adiponectin receptors. Additionally, we report that intracerebroventricular resistin increased plasma FGF21 levels and downregulated its receptor components in the hypothalamus and peripheral tissues, promoting FGF21 resistance. Interestingly, we also show that resistin effects were abolished in TLR4 knockout mice and in neuronal cells expressing TLR4 siRNAs. Our study reveals a novel mechanism of insulin resistance onset orchestrated by a central resistin-TLR4 pathway that impairs adiponectin signaling and promotes FGF21 resistance.


Cellular Physiology and Biochemistry | 2012

Leptin Affects Insulin Action in Astrocytes and Impairs Insulin-mediated Physical Activity

Tina Sartorius; Martin Heni; Otto Tschritter; Hubert Preissl; Sabine Hopp; Andreas Fritsche; Paul-Simon Lievertz; Arieh Gertler; Flavien Berthou; Mohammed Taouis; Harald Staiger; Hans-Ulrich Häring; Anita M. Hennige

Background/Aims Impaired insulin action is an early event in the pathogenesis of obesity and type 2-diabetes, and among the metabolic confounders in obese, hyperleptinaemia is constantly present; however its impact on insulin action in the brain and locomotor activity is unknown. MethodsWe examined insulin action by Western Blot analysis and glycogen synthesis in primary astrocytes and brain tissue and detected locomotion in C57BL/6 mice. The insulin-mediated desire to move was evaluated in healthy volunteers and correlated to leptin levels. Results Leptin treatment led to a significant decrease in insulin-mediated phosphorylation of the insulin receptor and Akt473 which was accompanied by a decline in glycogen synthesis in primary astrocytes and significantly decreased insulin-induced phosphorylation of the insulin receptor and insulin receptor substrate-2 in brain tissues of mice. Intracerebroventricular insulin failed to promote locomotion in the presence of elevated leptin levels. Lean human subjects reported an increase in the desire to move following insulin which failed in obese and there was an inverse correlation between the insulin-mediated desire to move and leptin levels. Conclusions Our data suggest a crosstalk of leptin and insulin in the brain which leads to a decline in locomotor activity. This might represent a molecular mechanism in obese to inhibit physical activity.

Collaboration


Dive into the Mohammed Taouis's collaboration.

Top Co-Authors

Avatar

Arieh Gertler

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire-Marie Vacher

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yacir Benomar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laure Riffault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laurence Amar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Baroin-Tourancheau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Charlotte Benoit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge