Mohammed Tarique
International Centre for Genetic Engineering and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammed Tarique.
Gene | 2013
Mohammed Tarique; Moaz Ahmad; Abulaish Ansari; Renu Tuteja
DEAD box RNA helicases play crucial roles in RNA metabolism such as splicing, ribosome biogenesis, RNA transport, degradation and translation. DDX6/DOZI (development of zygote inhibited) is one of the well characterized member of the DEAD box family and is highly conserved from humans to malaria parasite. DDX6 is involved in a variety of biological processes, which include the sexual development of the protozoan parasite. In the present manuscript we report that P. falciparum DOZI (DDX6 homologue); PfDZ50 contains the characteristic DNA and RNA binding, nucleic acid-dependent ATPase and RNA unwinding activities. Enzymatic characterization of truncated derivatives of PfDZ50 such as PfDZ50T1 (domain 1) and PfDZ50T2 (domain 2) shows that none of them contains ATPase activity. Furthermore, we confirmed that PfDZ50 interacts with PfeIF4E mainly through domain 1. Using in vitro translation assays we show that PfDZ50 inhibits translation. With the same assays we further report that externally added PfeIF4E restores ~70% of translation. Using immunofluorescence assays we demonstrate that PfDZ50 is localized mainly in the cytoplasm in the asexual intraerythrocytic developmental stages of P. falciparum. The localization pattern further suggests that PfDZ50 appears typically in granular bodies throughout the cytoplasm. Thus these studies will advance our knowledge regarding the function of PfDZ50/DDX6 in general.
PLOS ONE | 2012
Moaz Ahmad; Abulaish Ansari; Mohammed Tarique; Akash Tripathi Satsangi; Renu Tuteja
Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia–Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1) containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa–IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3′ to 5′. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue) and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite.
Molecular and Biochemical Parasitology | 2012
Mohammed Tarique; Akash Tripathi Satsangi; Moaz Ahmad; Shailja Singh; Renu Tuteja
Malaria is one of the most important infectious diseases in many regions around the world including India. Plasmodium falciparum is the cause of most lethal form of malaria while Plasmodium vivax is the major cause outside Africa. Regardless of considerable efforts over the last many years there is still no commercial vaccine against malaria and the disease is mainly treated using a range of established drugs. With time, the malaria parasite is developing drug resistance to most of the commonly used drugs. This drug resistance might be due to defective mismatch repair in the parasite. Previously we have reported that the P. falciparum genome contains homologues to most of the components of mismatch repair (MMR) complex. In the present study we report the detailed biochemical characterization of one of the main component of MMR complex, MLH, from P. falciparum. Our results show that MLH is an ATPase and it can incise covalently closed circular DNA in the presence of Mn(2+) or Mg(2+) ions. Using the truncated derivatives we show that full length protein MLH is required for all the enzymatic activities. Using immunodepletion assays we further show that the ATPase and endomuclease activities are attributable to PfMLH protein. Using immunofluorescence assay we report that the peak expression of MLH in both 3D7 and Dd2 strains of P. falciparum is mainly in the schizont stages of the intraerythrocytic development, where DNA replication is active. MMR also contributes to the overall fidelity of DNA replication and the peak expression of MLH in the schizont stages suggests that MLH is most likely involved in correcting the mismatches occurring during replication. This study should make a significant contribution in our better understanding of DNA metabolic processes in the parasite.
BMC Biochemistry | 2014
Mohammed Tarique; Farha Tabassum; Moaz Ahmad; Renu Tuteja
BackgroundHuman malaria parasite infection and its control is a global challenge which is responsible for ~0.65 million deaths every year globally. The emergence of drug resistant malaria parasite is another challenge to fight with malaria. Enormous efforts are being made to identify suitable drug targets in order to develop newer classes of drug. Helicases play crucial roles in DNA metabolism and have been proposed as therapeutic targets for cancer therapy as well as viral and parasitic infections. Genome wide analysis revealed that Plasmodium falciparum possesses UvrD helicase, which is absent in the human host.ResultsRecently the biochemical characterization of P. falciparum UvrD helicase revealed that N-terminal UvrD (PfUDN) hydrolyses ATP, translocates in 3’ to 5’ direction and interacts with MLH to modulate each other’s activity. In this follow up study, further characterization of P. falciparum UvrD helicase is presented. Here, we screened the effect of various DNA interacting compounds on the ATPase and helicase activity of PfUDN. This study resulted into the identification of daunorubicin (daunomycin), netropsin, nogalamycin, and ethidium bromide as the potential inhibitor molecules for the biochemical activities of PfUDN with IC50 values ranging from ~3.0 to ~5.0 μM. Interestingly etoposide did not inhibit the ATPase activity but considerable inhibition of unwinding activity was observed at 20 μM. Further study for analyzing the importance of PfUvrD enzyme in parasite growth revealed that PfUvrD is crucial/important for its growth ex-vivo.ConclusionsAs PfUvrD is absent in human hence on the basis of this study we propose PfUvrD as suitable drug target to control malaria. Some of the PfUvrD inhibitors identified in the present study can be utilized to further design novel and specific inhibitor molecules.
Protoplasma | 2016
Farhana Rahman; Mohammed Tarique; Moaz Ahmad; Renu Tuteja
RecQ helicases, also addressed as a gatekeeper of genome, are an inevitable family of genome scrutiny proteins conserved from prokaryotes to eukaryotes and play a vital role in DNA metabolism. The deficiencies of three RecQ proteins out of five are involved in genetic abnormalities like Bloom syndrome (BS), Werner syndrome (WS), and Rothmund–Thomson syndrome (RTS). It is noteworthy that Plasmodium falciparum contains only two members of the RecQ family as opposed to five members present in the host Homo sapiens. In the present study, we report the biochemical characterization of the homologue of Werner (Wrn) helicase from P. falciparum 3D7 strain. Although there are significant sequence conservations between Wrn helicases of both H. sapiens and P. falciparum as well as among all the other Plasmodium species, they contain some peculiar differences also. In silico studies reveal that PfWrn is evolutionarily close to the bacterial RecQ protein. The N-terminal fragment (PfWrnN) contains all the helicase motifs along with all the functional domains and the predicted structure resembles with the human RecQ1 protein, whereas the C-terminal fragment (PfWrnC) contains no significant domain. Biochemical characterization further revealed that purified recombinant PfWrnN shows ATPase and DNA helicase activity in 3′ to 5′ direction, but PfWrnC lacks the ATPase and helicase activities. Immunofluorescence study shows that PfWrn is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain and localizes distinctly in the nucleus. This study can be used for further characterization of RecQ helicases that will aid in understanding the physiological significance of these helicases in the malaria parasite.
PLOS ONE | 2014
Abulaish Ansari; Mohammed Tarique; Renu Tuteja
Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD) contains all the conserved domains of PfUvrD but only the intervening linker sequences are shortened. sUD (∼45 kDa) and one of its smallest derivative sUDN1N2 (∼22 kDa) contain ATPase and DNA helicase activities. sUD and sUDN1N2 can utilize hydrolysis of all the NTPs and dNTPs, can also unwind blunt end duplex DNA substrate and unwind DNA duplex in 3 to 5 direction only. Some of the properties of sUD are similar to the PfUvrD helicase. Mutagenesis in the conserved motif Ia indicate that the mutants sUDM and sUDN1N2M lose all the enzyme activities, which further confirms that these activities are intrinsic to the synthesized proteins. These studies show that for helicase activity only the conserved domains are essentially required and intervening sequences have almost no role. These observations will aid in understanding the unwinding mechanism by a helicase.
Protoplasma | 2015
Moaz Ahmad; Mohammed Tarique; Farhat Afrin; Narendra Tuteja; Renu Tuteja
Human malaria is a major parasitic infection, and the situation has worsened mainly due to the emergence of resistant malaria parasites to several anti-malarial drugs. Thus, an urgent need to find suitable drug targets has led to the development of newer classes of anti-malarial drugs. Helicases have been targeted to develop therapeutics for viral, bacterial, and other microorganism infections. Recently, Plasmodium falciparum RuvB ATPases/helicases have been characterized and proposed as a suitable antimalarial drug target. In the present study, the screening of various compounds was done and the results suggest that PfRuvB1 ATPase activity is inhibited considerably by the novobiocin and partially by cisplatin and ciprofloxacin. Helicase assay of PfRuvB1 in the presence of various compounds suggest novobiocin, actinomycin, and ethidium bromide as potent inhibitors. Novobiocin inhibits the helicase activity of PfRuvB1 possibly by blocking the ATPase activity of PfRuvB1. This study is unique in respect to the identification of novobiocin as inhibitor of PfRuvB1, partially by competing with ATP binding at its active site and provides evidence for PfRuvB1 as target of novobiocin after DNA gyrase-B and HSP90. These studies will certainly help the pharmacologist to design and develop some novel inhibitor specific to PfRuvB1, which may serve as suitable chemotherapeutics to target malaria.
Scientific Reports | 2017
Manish Chauhan; Mohammed Tarique; Renu Tuteja
Plasmodium falciparum is responsible for most dangerous and prevalent form of malaria. The emergence of multi drug resistant parasite hindered the prevention of malaria burden worldwide. Helicases are omnipresent enzymes, which play important role in nucleic acid metabolism and can be used as potential targets for development of novel therapeutics. The genome wide analysis of P. falciparum 3D7 strain revealed some novel parasite specific helicases, which are not present in human host. Here we report the detailed biochemical characterization of P. falciparum parasite specific helicase 3 (PfPSH3). The characteristic ATPase and helicase activities of PfPSH3 reside in its N-terminal region (PfPSH3N) as it contains all the conserved signature motifs whereas the C-terminal does not show any detectable biochemical activity. PfPSH3N also shows DNA helicase activity in the 3′–5′ direction. The immunofluorescence microscopy results show that PSH3 is localized in nucleus as well as in cytoplasm during different stages such as trophozoite and early schizont stages of intraerythrocytic development. This report sets the foundation for further study of parasite specific helicases and will be helpful in understanding the parasite biology.
Frontiers in Microbiology | 2017
Mohammed Tarique; Moaz Ahmad; Manish Chauhan; Renu Tuteja
Malaria a major parasitic infection globally particularly in tropical and sub-tropical regions of the world is responsible for about 198 million cases and estimated deaths due to this disease are about 0.6 million. The emergence of drug resistance in the malaria parasite is alarming and it is necessary to understand its underlying cause and molecular mechanisms. It has been established that drug resistant malaria parasites have defective mismatch repair (MMR) therefore it is essential to study this pathway and its components in detail. Recently a number of non-synonymous Single Nucleotide Polymorphisms have been reported in genes involved in MMR pathways. PfMLH is an endonuclease essential to restore the MMR in drug resistant strains of Plasmodium falciparum. Considering all these facts about the role of MMR in emergence of drug resistant parasite, in this manuscript we report a genome wide analysis of the components of the MMR pathway such as MLH, Pms1, MSH2-1, MSH2-2, MSH6, and UvrD using in silico bioinformatics based approaches. The phylogenetic analysis revealed evolutionary closeness with the MMR components of various organisms. It is noteworthy that P. falciparum contains two homologs of MSH2, which are located on different chromosomes. The structural modeling of these components showed their similarity with the human/yeast MMR components. The docking studies reveal that PfUvrD and PfMLH interact with each other. The in silico identification of interacting partners of the major MMR components identified numerous P. falciparum specific proteins. In line with our previous studies the present study will also contribute significantly to understand the MMR pathway of malaria parasite.
Plant Molecular Biology | 2014
Narendra Tuteja; Mohammed Tarique; Mst. Sufara Akhter Banu; Moaz Ahmad; Renu Tuteja
Collaboration
Dive into the Mohammed Tarique's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs