Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammed Zourob is active.

Publication


Featured researches published by Mohammed Zourob.


Biosensors and Bioelectronics | 2013

Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue.

Reda Elshafey; Ana C. Tavares; Mohamed Siaj; Mohammed Zourob

A sensitive label-free impedimetric immunosensor for the detection of cancer biomarker epidermal growth factor receptor (EGFR) was developed with a limit of detection as low as 0.34 pg mL(-1) in PBS and 0.88 pg mL(-1) in human plasma. The gold nanoparticles were electrodeposited to modify the gold surface and to increase the electrochemical active area by a factor of approximately 3, i.e. by 68%. Protein G was used as scaffold for well oriented EGFR antibodies immobilization. Under optimal experimental parameters, the impedance changes were used for the detection of EGFR with a wide dynamic range of 1 pg mL(-1)-1 μg mL(-1). The immunosensor showed an excellent reproducibility and selectivity against biomarkers, murine double minute 2 and platelet derived growth factor receptor. The excellent analytical performance of the EGFR immunosensor in terms of selectivity, sensitivity and low detection limit might be attributed to the synergetic effect between the Au nanoparticles and the protein G scaffold. The matrix effect from mouse brain tissue homogenate was also studied and the immunosensor showed excellent recoveries ranging from 98.3% to 115% and RSD of 1.55-6.17. Finally, our developed strategy could open new avenues for clinical screening and prognosis of tumors.


Biosensors and Bioelectronics | 2015

Aptamer-based competitive electrochemical biosensor for brevetoxin‐2

Shimaa Eissa; Mohamed Siaj; Mohammed Zourob

Brevetoxins (BTXs) are very potent marine neurotoxins that increased in geographical distribution in the past decade causing the illness clinically described as neurological shellfish poisoning (NSP). The ethical problems as well as the technical difficulties associated with the currently employed analysis methods for marine toxins are encouraging the research for suitable alternatives to be applied in a regulatory monitoring regime. Here, we report an electrochemical biosensor platform for BTX-2 detection utilising aptamer as specific receptor. Using in vitro selection, high affinity DNA aptamers to BTX-2 were successfully selected for the first time from a large pool of random sequences. The binding of BTX-2 to aptamer pools/clones was monitored using fluorescence and electrochemical impedance spectroscopy (EIS). The aptamer BT10 exhibited the highest binding affinity to BTX-2, with a dissociation constant of 42nM. The effects of the incubation time, pH and metal ions concentrations on the aptamer-toxin binding were studied. The aptamer BT10 was used to construct a label-free competitive impedimetric biosensor for BTX-2 achieving a detection limit of 106pg/ml. We observed a high degree of cross reactivity of the selected aptamer to the two similar congeners, BTX-2 and -3, whereas no cross reactivity to other marine toxins was obtained. Moreover, the aptasensor was applied for the detection of BTX-2 in spiked shellfish extract showing a very high recovery percentage. We believe that the proposed aptasensor will facilitate the routine detection of BTX-2 in food samples.


Critical Reviews in Biotechnology | 2015

Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes

Minhaz Uddin Ahmed; Mohammad Mosharraf Hossain; Mohammadali Safavieh; Yen Lu Wong; Ibrahim Abd Rahman; Mohammed Zourob; Eiichi Tamiya

Abstract Screen printing technology provides a cheap and easy means to fabricate disposable electrochemical devices in bulk quantities which are used for rapid, low-cost, on-site, real-time and recurrent industrial, pharmaceutical or environmental analyses. Recent developments in micro-fabrication and nano-characterization made it possible to screen print reproducible feature on materials including plastics, ceramics and metals. The processed features forms screen-printed disposable biochip (SPDB) upon the application of suitable bio-chemical recognition receptors following appropriate methods. Adequacy of biological and non-biological materials is the key to successful biochip development. We can further improve recognition ability of SPDBs by adopting new screen printed electrode (SPE) configurations. This review covers screen-printing theory with special emphasis on the technical impacts of SPE architectures, surface treatments, operational stability and signal sensitivity. The application of SPE in different areas has also been summarized. The article aims to highlight the state-of-the-art of SPDB at the laboratory scale to enable us in envisaging the deployment of emerging SPDB technology on the commercial scale.


Biosensors and Bioelectronics | 2014

High-throughput real-time electrochemical monitoring of LAMP for pathogenic bacteria detection

Mohammadali Safavieh; Minhaz Uddin Ahmed; Andy Ng; Mohammed Zourob

One of the significant challenges in healthcare is the development of point-of-care (POC) diagnostics. POC diagnostics require low-cost devices that offer portability, simplicity in operation and the ability for high-throughput and quantitative analysis. Here, we present a novel roll-to-roll ribbon fluid-handling device for electrochemical real-time monitoring of nucleic acid (NA) amplification and bacteria detection. The device rendered loop-mediated isothermal amplification (LAMP) and real-time electrochemical detection based on the interaction between LAMP amplicon and the redox-reactive osmium complex. We have shown the detection of 30CFU/ml of Escherichia coli (in the range between 30 and 3×10(7)CFU/ml) and 200CFU/ml of Staphylococcus aureus (in the range of 200-2×10(5)CFU/ml) cultured samples in both real-time and end point detection. This device can be used for the detection of various Gram-negative and a number of Gram-positive bacterial pathogens with high sensitivity and specificity in a high-throughput format. Using a roll-to-roll cassette approach, we could detect 12 samples in one assay. Since the LAMP and electrochemical analysis are implemented within sealed flexible biochips, time-consuming processing steps are not required and the risk of contamination is significantly reduced.


Biosensors and Bioelectronics | 2015

DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a

Reda Elshafey; Mohamed Siaj; Mohammed Zourob

High affinity DNA aptamers against anatoxin-a (ATX), the smallest potent neurotoxin (Mol. Wt, 165.23 Da) were selected and identified in vitro using the systematic evolution of ligands by exponential enrichment (SELEX) approach. Aptamers with dissociation constants (Kd) of nanomolar range were isolated. The aptamer sequence of highest affinity was used to design a label-free impedance based aptasensor to assay ATX, for which there are no reported biosensors so far. The aptamer self assembled monolayer is formed on a gold electrode using the disulfide modified aptamer. The assembly process of the aptasensor was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Upon ATX binding to the immobilized aptamer, a significant decrease in the electron-transfer resistance was observed as a result of the aptamer conformation change, which is used as the sensor signal. The aptasensor showed a limit of detection of 0.5 nM and a wide linear range for ATX concentrations between 1 nM and 100 nM. The Kd of anti-ATX aptamer was calculated by electrochemical methods as well as the fluorescence. Interestingly, the Kd that was calculated from the aptasensor signal showed a lower value implying that the anchoring of the aptamer on the Au surface enhanced its affinity to ATX. The ATX aptasensor showed high stability as well as high specificity against common cynaobacterial toxins. Further development of biosensors that use anatoxin-a binding aptamers as a new recognition receptors could provide potential alternatives to the traditional assays for fast and simple monitoring of anatoxin-a.


Nano Research | 2015

Functionalized CVD monolayer graphene for label-free impedimetric biosensing

Shimaa Eissa; Gastón Contreras Jiménez; Farzaneh Mahvash; Abdeladim Guermoune; Chaker Tlili; Thomas Szkopek; Mohammed Zourob; Mohamed Siaj

Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate was examined as electrode material for electrochemical biosensing applications. We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (EIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]3−/4− solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL−1 to 100 ng·mL−1, with a detection limit of 0.9 pg·mL−1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.


Analyst | 2013

Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT)

Khaled A. Mahmoud; Mohammed Zourob

A new lignin modified hybrid microsphere, comprising poly(styrene-co-acrylic acid) core and magnetite (Fe3O4)/Au nanoparticle (NP) shell, was proposed here for the selective and highly sensitive detection and removal of 2,4,6-trinitrotoluene (TNT) explosives based on surface enhanced Raman scattering (SERS) and electrochemical detection methods. The presence of lignin and the highly packed layer of Fe3O4/AuNPs as a magnetic collector and metal enhancer for SERS signals allowed for the detection of TNT below 1 pM.


Expert Review of Molecular Diagnostics | 2013

Recent progress in prostate-specific antigen and HIV proteases detection.

Ghadeer A. R. Y. Suaifan; Mayadah B. Shehadeh; Andy Ng; Mohammed Zourob

Proteases mediate a wide variety of biological events and have a critical role in the development of many diseases. Protease detection methods can be hindered by the limitation of assay safety, sensitivity, specificity, time constraints and ease of on-site analysis. Notably, the implementation of various detection methods on biosensing platforms translates them into practical biosensing applications. Currently, the detection of prostate cancer and AIDS at the earliest occasion is one of the major research obstacles. Therefore, recent advances focus on the development of portable detection systems toward point-of-care testing. These detection systems should be highly sensitive and specific for the detection of their prognostic biomarkers, such as the prostate-specific antigen and HIV load assay for prostate cancer and AIDS, respectively. These methods will also facilitate decision-making on a treatment regimen.


High Throughput Screening for Food Safety Assessment#R##N#Biosensor Technologies, Hyperspectral Imaging and Practical Applications | 2015

Microfluidic biosensors for high throughput screening of pathogens in food

Mohammadali Safavieh; Sharifun Nahar; Mohammed Zourob; Minhaz Uddin Ahmed

This chapter has four subsections: the first section introduces the major foodborne pathogens that exist in food samples. The second section introduces the microfluidic concept. Despite being developed in the early 1990s, this technology has changed, enabling the integration of various sensing techniques as well as the manipulation of samples and various fabrication and detection techniques that are presented in this section. In the third section, two significant but different sensing techniques are discussed: proteomics and genomic-based techniques. Proteomics provides direct whole-cell detection methods with low sensitivity, while genomic-based techniques are based on extracting and amplifying DNA from the cells. Various amplification techniques including polymerase chain reaction and isothermal amplification methods are discussed. Finally, in the fourth section, several lab-on-a-chip platforms for foodborne bacterial detection are presented. This chapter therefore provides a mini review on the application of various proteomics and genomic-based methods as well as gene amplification techniques using microfluidic technologies to support in-field bacterial detection in food samples.


Water Science and Technology | 2015

Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

Khaled A. Mahmoud; Ahmed Abdel-Wahab; Mohammed Zourob

A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

Collaboration


Dive into the Mohammed Zourob's collaboration.

Top Co-Authors

Avatar

Mohammadali Safavieh

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Minhaz Uddin Ahmed

Universiti Brunei Darussalam

View shared research outputs
Top Co-Authors

Avatar

Mohamed Siaj

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Andy Ng

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Shimaa Eissa

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Reda Elshafey

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sharifun Nahar

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge