Mohan Kocherla
Hartford Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohan Kocherla.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Shashwath A. Meda; Gualberto Ruaño; Andreas Windemuth; Kasey O'Neil; Clifton Berwise; Sabra M. Dunn; Leah E. Boccaccio; Balaji Narayanan; Mohan Kocherla; Emma Sprooten; Matcheri S. Keshavan; Carol A. Tamminga; John A. Sweeney; Brett A. Clementz; Vince D. Calhoun; Godfrey D. Pearlson
Significance Connectivity within the brain’s resting-state default mode network (DMN) has been shown to be compromised in multiple genetically complex/heritable neuropsychiatric disorders. Uncovering the source of such alterations will help in developing targeted treatments for these disorders. To our knowledge, this study is the first attempt to do so by using a multivariate data-driven fusion approach. We report five major DMN subnodes, all of which were found to be hypo-connected in probands with psychotic illnesses. Further, we found an overrepresentation of genes in major relevant pathways such as NMDA potentiation, PKA/immune response signalling, synaptogenesis, and axon guidance that influenced altered DMN connectivity in psychoses. The study thus identifies several putative genes and pathways related to an important biological marker known to be compromised in psychosis. The brain’s default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging–genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases.
Molecular Psychiatry | 2007
Gualberto Ruaño; John W. Goethe; C Caley; Stephen B. Woolley; Theodore R. Holford; Mohan Kocherla; Andreas Windemuth; J de Leon
Atypical antipsychotics induce pre-diabetic symptoms in some but not all patients, characterized most notably by elevated weight. The side effect profiles of the various drugs in the class differ, however, raising the possibility of drug-specific mechanisms for similar side effects. We used physiogenomic analysis, an approach previously employed to study the genetics of drug and diet response, to discover and compare genetic associations with weight profiles observed in patients treated with olanzapine and risperidone as an approach to unraveling contrasting mechanistic features of both drugs. A total of 29 single nucleotide polymorphisms (SNPs) were selected from 13 candidate genes relevant to two potential pharmacological axes of psychotropic-related weight profiles, appetite peptides and peripheral lipid homeostasis. We applied physiogenomic analysis to a cross-section of 67 and 101 patients being treated with olanzapine and risperidone, respectively, and assessed genetic associations with the weight profiles. Weight profiles in patients treated with olanzapine were significantly associated with SNPs in the genes for apolipoprotein E, apolipoprotein A4 and scavenger receptor class B, member 1. Weight profiles in patients treated with risperidone were significantly associated with SNPs in the genes for leptin receptor, neuropeptide Y receptor Y5 and paraoxonase 1. These results are consistent with contrasting mechanisms for the weight profile of patients treated with these drugs. Genes associated with olanzapine weight profiles may be related to peripheral lipid homeostatic axes, whereas those associated with risperidones may be related to brain appetite peptide regulation. Future physiogenomic studies will include neurotransmitter receptor SNPs and validation in independent samples.
Muscle & Nerve | 2007
Gualberto Ruaño; Paul D. Thompson; Andreas Windemuth; Richard L. Seip; Amit Dande; Alexey Sorokin; Mohan Kocherla; Andrew P. Smith; Theodore R. Holford; Alan H.B. Wu
We employed physiogenomic analyses to investigate the relationship between myalgia and selected polymorphisms in serotonergic genes, based on their involvement with pain perception and transduction of nociceptive stimuli. We screened 195 hypercholesterolemic, statin‐treated patients, all of whom received either atorvastatin, simvastatin, or pravastatin. Patients were classified as having no myalgia, probable myalgia, or definite myalgia, and assigned a myalgia score of 0, 0.5, or 1, respectively. Fourteen single nucleotide polymorphisms (SNPs) were selected from candidates within the 5‐HT receptor gene families [5a‐hydroxytryptamine receptor genes (HTR) 1D, 2A, 2C, 3A, 3B, 5A, 6, 7] and the serotonin transporter gene (SLC6A4). SNPs in the HTR3B and HTR7 genes, rs2276307 and rs1935349, respectively, were significantly associated with the myalgia score. Individual differences in pain perception and nociception related to specific serotonergic gene variants may affect the development of myalgia in statin‐treated patients. Muscle Nerve, 2007
Pharmacogenomics | 2005
Gualberto Ruaño; Paul D. Thompson; Andreas Windemuth; Andrew P. Smith; Mohan Kocherla; Theodore R. Holford; Richard L. Seip; Alan Hb Wu
Statins are highly effective at reducing coronary disease risk. The main side effects of these medications are a variety of skeletal muscle complaints ranging from mild myalgia to frank rhabdomyolysis. To search for physiologic factors possibly influencing statin muscle toxicity, we screened for genetic associations with serum creatine kinase (CK) levels in 102 patients receiving statin therapy for hypercholesteremia. A total of 19 single nucleotide polymorphism (SNPs) were selected from ten candidate genes involved in vascular homeostasis. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. SNPs in the angiotensin II Type 1 receptor (AGTR1) and nitric oxide synthase 3 (NOS3) genes were significantly associated with CK activity. These results demonstrate a strong association between CK activity during statin treatment and variability in genes related to vascular function, and suggest that vascular smooth muscle function may contribute to the muscle side effects of statins.
Atherosclerosis | 2011
Gualberto Ruaño; Andreas Windemuth; Alan H.B. Wu; John P. Kane; Mary J. Malloy; Clive R. Pullinger; Mohan Kocherla; Kali Bogaard; Bruce R. Gordon; Theodore R. Holford; Ankur Gupta; Richard L. Seip; Paul D. Thompson
OBJECTIVE We investigated genetic variants predictive of muscular side effects in patients treated with statins. We utilized a physiogenomic approach to prototype a multi-gene panel correlated with statin-induced myalgia. BACKGROUND Statin-induced myalgia occurs in ∼10% of lipid clinic outpatients. Its clinical manifestation may depend in part upon gene variation from patient to patient. METHODS We genotyped 793 patients (377 with myalgia and 416 without) undergoing statin therapy at four U.S. outpatient clinic sites to evaluate 31 candidate genes from the literature for their association with statin-induced common myalgia. RESULTS Three previously hypothesized candidate genes were validated: COQ2 (rs4693570) encoding para-hydroxybenzoate-polyprenyltransferase, which participates in the biosynthesis of coenzyme Q10 (p<0.000041); ATP2B1 (rs17381194) which encodes a calcium transporting ATPase involved in calcium homeostasis (p<0.00079); and DMPK (rs672348) which encodes a protein kinase implicated in myotonic dystrophy (p<0.0016). CONCLUSIONS The candidate genes COQ2, ATP2B1, and DMPK, representing pathways involved in myocellular energy transfer, calcium homeostasis, and myotonic dystonia, respectively, were validated as markers for the common myalgia observed in patients receiving statin therapy. The three genes integrated into a physiogenomic predictive system could be relevant to myalgia diagnosis and prognosis in clinical practice.
Nutrition & Metabolism | 2006
Gualberto Ruaño; Andreas Windemuth; Mohan Kocherla; Theodore R. Holford; Maria Luz Fernandez; Cassandra E. Forsythe; Richard J. Wood; William J. Kraemer; Jeff S. Volek
BackgroundDiets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction.MethodsWe screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail.ResultsMean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss.ConclusionA strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.
Pharmacogenomics | 2009
Gualberto Ruaño; Jorge Duconge; Andreas Windemuth; Carmen L. Cadilla; Mohan Kocherla; David Villagra; Jessica Y. Renta; Theodore R. Holford; Pedro J. Santiago-Borrero
AIMS Admixture in the population of the island of Puerto Rico is of general interest with regards to pharmacogenetics to develop comprehensive strategies for personalized healthcare in Latin Americans. This research was aimed at determining the frequencies of SNPs in key physiological, pharmacological and biochemical genes to infer population structure and ancestry in the Puerto Rican population. MATERIALS & METHODS A noninterventional, cross-sectional, retrospective study design was implemented following a controlled, stratified-by-region, random sampling protocol. The sample was based on birthrates in each region of the island of Puerto Rico, according to the 2004 National Birth Registry. Genomic DNA samples from 100 newborns were obtained from the Puerto Rico Newborn Screening Program in dried-blood spot cards. Genotyping using a physiogenomic array was performed for 332 SNPs from 196 cardiometabolic and neuroendocrine genes. Population structure was examined using a Bayesian clustering approach as well as by allelic dissimilarity as a measure of allele sharing. RESULTS The Puerto Rican sample was found to be broadly heterogeneous. We observed three main clusters in the population, which we hypothesize to reflect the historical admixture in the Puerto Rican population from Amerindian, African and European ancestors. We present evidence for this interpretation by comparing allele frequencies for the three clusters with those for the same SNPs available from the International HapMap project for Asian, African and European populations. CONCLUSION Our results demonstrate that population analysis can be performed with a physiogenomic array of cardiometabolic and neuroendocrine genes to facilitate the translation of genome diversity into personalized medicine.
Biomarkers in Medicine | 2013
Gualberto Ruaño; Bonnie L. Szarek; David Villagra; Krystyna Gorowski; Mohan Kocherla; Richard L. Seip; John W. Goethe; Harold I Schwartz
AIM This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. METHODS A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. RESULTS Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). CONCLUSION CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment.
Clinica Chimica Acta | 2009
Gualberto Ruaño; James Bernene; Andreas Windemuth; Bruce Bower; Detlef Wencker; Richard L. Seip; Mohan Kocherla; Theodore R. Holford; William A. Petit; Steven Hanks
BACKGROUND The thiazolidinediones (TZDs) improve tissue sensitivity to insulin in patients with type II diabetes, resulting in reduced levels of fasting blood glucose and glycated hemoglobin. However, TZDs unpredictably demonstrate adverse effects of increased body weight, fluid retention, and edema. The balance of efficacy and safety of TZD varies widely from patient to patient. Genetic variability may reveal pathophysiological pathways underlying weight gain associated with TZD therapy and due to adiposity and/or edema. METHODS We analyzed 384 single nucleotide polymorphisms (SNPs) from 222 cardiovascular and metabolic genes in 87 outpatients with type 2 diabetes receiving thiazolidinedione therapy. Physiogenomic analysis was used to discover associations with body mass index (BMI) and edema. RESULTS The 5 most significant gene associations found between BMI and SNPs were ADORA1, adenosine A1 receptor (rs903361, p<0.0003), PKM2, pyruvate kinase-muscle (rs2856929, p<0.002); ADIPOR2, adiponectin receptor 2 (rs7975375, p<0.007); UCP2, uncoupling protein 2 (rs660339, p<0.008); and APOH, apolipoprotein H (rs8178847, p<0.010). For edema, the 5 most significant gene associations were NPY, neuropeptide Y (rs1468271, p<0.006); GYS1, glycogen synthase 1-muscle (rs2287754, p<0.013); CCL2, chemokine C-C motif ligand 2 (rs3760396, p<0.015); OLR1, oxidized LDL receptor 1 (rs2742115, p<0.015); and GHRH, growth hormone releasing hormone (rs6032470, p<0.023). After accounting for multiple comparisons, ADORA1 was significantly associated with BMI at a false discovery rate (FDR) of <10%. CONCLUSION Physiogenomic associations were discovered suggesting mechanistic links between adenosine signaling and BMI, and between vascular permeability and drug-induced edema.
Clinica Chimica Acta | 2010
David Villagra; Jorge Duconge; Andreas Windemuth; Carmen L. Cadilla; Mohan Kocherla; Krystyna Gorowski; Kali Bogaard; Jessica Y. Renta; Irelys A. Cruz; Sara Mirabal; Richard L. Seip; Gualberto Ruaño
BACKGROUNDS Admixture is of great relevance to the clinical application of pharmacogenetics and personalized medicine, but unfortunately these studies have been scarce in Puerto Ricans. Besides, allele frequencies for clinically relevant genetic markers in warfarin response (i.e., CYP2C9 and VKORC1) have not yet been fully characterized in this population. Accordingly, this study is aimed at investigating whether a correlation between overall genetic similarity and CYP2C9 and/or VKORC1 genotypes could be established. METHODS 98 DNA samples from Puerto Ricans were genotyped for major CYP2C9 and VKORC1 polymorphisms and tested on a physiogenomic (PG)-array to infer population structure and admixture pattern. RESULTS Analysis affirmed that Puerto Ricans are broadly admixed. A genetic distance dendrogram was constructed by clustering those subjects with similar genetic profiles. Individual VKORC1 and CYP2C9 genotypes were visually overlaid atop the three dendrogram sectors. Sector-1, representing Amerindian ancestry, showed higher VKORC1 -1639G>A variant frequency than the rest of the population (p=0.051). Although CYP2C9*3 allele frequencies matched the expected HapMap values, admixture may explain deviations from published findings regarding VKORC1 -1639G>A and CYP2C9*2 allele frequencies in sector-3. CONCLUSIONS Results suggest that the observed inter-individual variations in ancestral contributions have significant implications for the way each Puerto Rican responds to warfarin therapy. Our findings provide valuable evidence on the importance of controlling for admixture in pharmacogenetic studies of Puerto Rican Hispanics.