Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohan R. Dasu is active.

Publication


Featured researches published by Mohan R. Dasu.


Diabetes Care | 2010

Increased Toll-Like Receptor (TLR) Activation and TLR Ligands in Recently Diagnosed Type 2 Diabetic Subjects

Mohan R. Dasu; Sridevi Devaraj; Samuel Park; Ishwarlal Jialal

OBJECTIVE Individuals with type 2 diabetes have a myriad of metabolic aberrations including increased inflammation, increasing their cardiovascular risk. Toll-like receptors (TLRs) and their ligands play a key role in insulin resistance and atherosclerosis. However, there is a paucity of data examining the expression and activity of TLRs in type 2 diabetes. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression, their ligands, and signaling in monocytes of recently diagnosed type 2 diabetic patients. RESEARCH DESIGN AND METHODS TLR mRNA, protein expression, TLR ligands, and TLR signaling were measured in freshly isolated monocytes from healthy human control subjects (n = 23) and type 2 diabetic subjects (n = 23) using real-time RT-PCR, Western blot, and flow cytometric assays. RESULTS Type 2 diabetic subjects had significantly increased TLR2, TLR4 mRNA, and protein in monocytes compared with control subjects (P < 0.05). Increased TLR2 and TLR4 expression correlated with BMI, homeostasis model assessment–insulin resistance (HOMA-IR), glucose, A1C, Nε-(carboxymethyl) lysine (CML), and free fatty acid (FFA). Ligands of TLR2 and TLR4, namely, HSP60, HSP70, HMGB1, endotoxin, and hyaluronan levels, were elevated in type 2 diabetic subjects and positively correlated with TLR2 and TLR4. Type 2 diabetic subjects showed increased MyD88, phosphorylated IRAK-1, Trif, TICAM-1, IRF-3, and NF-κB p65 expression in monocytes compared with control subjects. Furthermore, TLR-MyD88-NF-κB signaling resulted in elevated levels of cytokines (P < 0.05), but increased interleukin (IL)-1β, interferon (IFN)-γ, and endotoxin were not significant when adjusted for BMI. CONCLUSIONS In this comprehensive study, we make the novel observation that TLR2 and TLR4 expression and their ligands, signaling, and functional activation are increased in recently diagnosed type 2 diabetes and contribute to the proinflammatory state.


Diabetes | 2008

High Glucose Induces Toll-Like Receptor Expression in Human Monocytes: Mechanism of Activation

Mohan R. Dasu; Sridevi Devaraj; Ling Zhao; Daniel H. Hwang; Ishwarlal Jialal

OBJECTIVE—Hyperglycemia-induced inflammation is central in diabetes complications, and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. However, there is a paucity of data examining the expression and activity of TLRs in hyperglycemic conditions. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression and mechanism of their induction in monocytic cells under high-glucose conditions. RESEARCH DESIGN AND METHODS—High glucose (15 mmol/l) significantly induced TLR2 and TLR4 expression in THP-1 cells in a time- and dose-dependent manner (P < 0.05). High glucose increased TLR expression, myeloid differentiation factor 88, interleukin-1 receptor–associated kinase-1, and nuclear factor-κB (NF-κB) p65-dependent activation in THP-1 cells. THP-1 cell data were further confirmed using freshly isolated monocytes from healthy human volunteers (n = 10). RESULTS—Pharmacological inhibition of protein kinase C (PKC) activity and NADPH oxidase significantly decreased TLR2 and TLR4 mRNA and protein (P < 0.05). Knocking down both TLR2 and TLR4 in the cells resulted in a 76% (P < 0.05) decrease in high-glucose–induced NF-κB activity, suggesting an additive effect. Furthermore, PKC-α knockdown decreased TLR2 by 61% (P < 0.05), whereas inhibition of PKC-δ decreased TLR4 under high glucose by 63% (P < 0.05). Small inhibitory RNA to p47Phox in THP-1 cells abrogated high-glucose–induced TLR2 and TLR4 expression. Additional studies revealed that PKC-α, PKC-δ, and p47Phox knockdown significantly abrogated high-glucose–induced NF-κB activation and inflammatory cytokine secretion. CONCLUSIONS—Collectively, these data suggest that high glucose induces TLR2 and -4 expression via PKC-α and PKC-δ, respectively, by stimulating NADPH oxidase in human monocytes.


American Journal of Physiology-endocrinology and Metabolism | 2011

Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors

Mohan R. Dasu; Ishwarlal Jialal

Type 2 diabetes (T2DM) is characterized by hyperglycemia, dyslipidemia, and increased inflammation. Previously, we showed that high glucose (HG) induces Toll-like receptor (TLR) expression, activity, and inflammation via NF-κB followed by cytokine release in vitro and in vivo. Here, we determined how HG-induced inflammation is affected by free fatty acids (FFA) in human monocytes. THP-1 monocytic cells, CD14(+) human monocytes, and transiently transfected HEK293 cells were exposed to various FFA (0-500 μM) and glucose (5-20 mM) for evaluation of TLR2, TLR4, NF-κB, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and superoxide release. In THP-1 cells, palmitate increased cellular TLR2 and TLR4 expression, generated reactive oxygen species (ROS), and increased NF-κB activity, IL-1β, and MCP-1 release in a dose- and time-dependent manner. Similar data were observed with stearate and FFA mixture but not with oleate. Conversely, NADPH oxidase inhibitor treatment repressed glucose- and palmitate-stimulated ROS generation and NF-κB activity and decreased IL-1β and MCP-1 expression. Silencing TLR2, TLR4, and p47phox with small inhibitory RNAs (siRNAs) significantly reduced superoxide release, NF-κB activity, IL-1β, and MCP-1 secretion in HG and palmitate-treated THP-1 cells. Moreover, data from transient transfection experiments suggest that TLR6 is required for TLR2 and MD2 for TLR4 to augment inflammation in FFA- and glucose-exposed cells. These findings were confirmed with human monocytes. We conclude that FFA exacerbates HG-induced TLR expression and activity in monocytic cells with excess superoxide release, enhanced NF-κB activity, and induced proinflammatory factor release.


Journal of Lipid Research | 2008

Human C-reactive protein promotes oxidized low density lipoprotein uptake and matrix metalloproteinase-9 release in Wistar rats

Uma Singh; Mohan R. Dasu; Patricia G. Yancey; Alaa Afify; Sridevi Devaraj; Ishwarlal Jialal

C-reactive protein (CRP) is present in the atherosclerotic plaques and appears to promote atherogenesis. Intraplaque CRP colocalizes with oxidized low density lipoprotein (OxLDL) and macrophages in human atherosclerotic lesions. Matrix metalloproteinase-9 (MMP-9) has been implicated in plaque rupture. CRP promotes OxLDL uptake and MMP induction in vitro; however, these have not been investigated in vivo. We examined the effect of CRP on OxLDL uptake and MMP-9 production in vivo in Wistar rats. CRP significantly increased OxLDL uptake in the peritoneal and sterile pouch macrophages compared with human serum albumin (huSA). CRP also significantly increased intracellular cholesteryl ester accumulation compared with huSA. The increased uptake of OxLDL by CRP was inhibited by pretreatment with antibodies to CD32, CD64, CD36, and fucoidin, suggesting uptake by both scavenger receptors and Fc-γ receptors. Furthermore, CRP treatment increased MMP-9 activity in macrophages compared with huSA, which was abrogated by inhibitors to p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), and nuclear factor (NF)-κB but not Jun N-terminal kinase (JNK) before human CRP treatment. Because OxLDL uptake by macrophages contributes to foam cell formation and MMP release contributes to plaque instability, this study provides novel in vivo evidence for the role of CRP in atherosclerosis.


Diabetologia | 2009

Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes.

Sridevi Devaraj; Mohan R. Dasu; Samuel Park; Ishwarlal Jialal

Aims/hypothesisType 1 diabetes is a proinflammatory state characterised by increased levels of circulating biomarkers of inflammation and monocyte activity. We have shown increased Toll-like receptor 2 (TLR2) and TLR4 expression and signalling in monocytes from type 1 diabetic patients. Several endogenous ligands of TLR2 and TLR4 have been identified; however, there is a paucity of data on levels of these endogenous ligands in diabetes. Thus, the aim of this study was to examine circulating levels of exogenous/endogenous ligands of TLR2 and TLR4 in type 1 diabetic patients and to compare these with the levels in matched healthy controls.MethodsHealthy controls (n = 37) and type 1 diabetic patients (n = 34) were recruited, and a fasting blood sample was obtained. Circulating levels of endotoxin, heat-shock protein 60 (Hsp60), high-mobility group box 1 (HMGB1) and growth arrest-specific 6 (GAS6) proteins were assessed by ELISA, and TLR2 and TLR4 expression was determined by flow cytometry.ResultsLevels of the classical TLR4 ligand, endotoxin, were significantly elevated in type 1 diabetic patients compared with those in matched controls. Hsp60 and HMGB1 concentrations were also significantly increased in the patients (p < 0.01 and p < 0.001, respectively). No significant differences were observed in GAS6.Conclusions/interpretationWe report the novel observation that levels of ligands of TLR2 and TLR4 are significantly elevated in type 1 diabetes, and this, in concert with hyperglycaemia, accounts for the increase in TLR2 and TLR4 activity, underscoring the proinflammatory state of type 1 diabetes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Adiponectin Decreases C-Reactive Protein Synthesis and Secretion From Endothelial Cells Evidence for an Adipose Tissue-Vascular Loop

Sridevi Devaraj; Natalie J. Török; Mohan R. Dasu; David Samols; Ishwarlal Jialal

Background and Objective—Inflammation is pivotal in atherosclerosis. C-reactive protein (CRP), in addition to being a cardiovascular risk marker, may also be proatherogenic. We have previously shown that in addition to the liver, human aortic endothelial cells (HAECs) synthesize and secrete CRP. Whereas CRP levels are increased in obesity, metabolic syndrome, and diabetes, levels of adiponectin are reduced in these conditions. We tested the hypothesis that adiponectin reduces CRP synthesis and secretion in HAECs under normoglycemic (5.5 mmol/L glucose) and hyperglycemic conditions (15 mmol/L glucose). Methods and Results—Adiponectin dose-dependently reduced CRP mRNA and protein from HAECs. Adiponectin treatment of HAECs significantly decreased I&kgr;B phosphorylation and NF&kgr;B binding activity. There was no effect of adiponectin on STAT or C/EBP transcriptional activity. Adiponectin also activated AMP kinase resulting in decreased NF&kgr;B activity and decreased CRP mRNA and protein. These effects of adiponectin were mimicked by AICAR, an activator of AMPK, and reversed by inhibition of AMPK. Thus, adiponectin reduces CRP synthesis and secretion from HAECs under hyperglycemia via upregulation of AMP kinase and downregulation of NF&kgr;B. Similar findings were observed in rat primary hepatocytes. Conclusions—Thus, in obesity and diabetes, the hypoadiponectinemia could exacerbate the proinflammatory state by inducing CRP production.


Expert Review of Endocrinology & Metabolism | 2010

Diabetes is a proinflammatory state: a translational perspective

Sridevi Devaraj; Mohan R. Dasu; Ishwarlal Jialal

The diabetic state confers an increased propensity to accelerated atherogenesis. Inflammation is pivotal in atherosclerosis; in addition to the established risk factors, inflammation appears to play a pivotal role in diabetes and its complications. Evidence for increased inflammation includes: increased levels of plasma C-reactive protein, the prototypic marker of inflammation; increased levels of plasminogen-activator inhibitor; increased monocyte superoxide and proinflammatory cytokine release (IL-1, IL-6 and TNF-α); increased monocyte adhesion to endothelium; increased NF-κB activity; and increased Toll-like receptor 2 and 4 expression and activity in diabetes. Thus, it appears that both Type 1 and Type 2 diabetes are proinflammatory states and that these could contribute to increased diabetic vasculopathies.


Endocrinology | 2009

Pioglitazone Inhibits Toll-Like Receptor Expression and Activity in Human Monocytes and db/db Mice

Mohan R. Dasu; Samuel Park; Sridevi Devaraj; Ishwarlal Jialal

Toll-like receptors (TLRs) are key innate immune sensors of endogenous damage signals and play an important role in inflammatory diseases like diabetes and atherosclerosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, has been reported to be an antiinflammatory agent. Thus, in the present study, we examined the antiinflammatory effects of PIO on TLR2 and TLR4 expression in human monocytes exposed to Pam3CSK4 (Pam; TLR2 ligand) and purified lipopolysaccharide (LPS; TLR4 ligand) using flow cytometry and real-time RT-PCR. Monocytes were isolated from healthy human volunteers and pretreated with PIO (1 microM) followed by Pam (170 ng/ml) and LPS (160 ng/ml) challenge. PIO significantly decreased Pam- and LPS-induced TLR2 (-56%) and TLR4 (-78%) expression (P < 0.05). In addition, PIO decreased TLR ligand-induced nuclear factor-kappaB activity (-63%), IL-1beta (-50%), IL-6 (-52%), monocyte chemoattractant protein-1(-83%), and TNF-alpha (-87%) compared with control. Next, PIO-treated db/db mice (n = 6/group) showed decreased TLR2 (-60%) and TLR4 (-45%) expression in peritoneal macrophages compared with vehicle control mice (P < 0.001) with associated decrease in MyD88-dependent signaling and nuclear factor-kappaB activation. Data suggest that Pam- and LPS-induced TLR2 and TLR4 expression are inhibited by PIO in human monocytes and db/db mice. Thus, we define a novel pathway by which PIO could induce antiinflammatory effects.


Atherosclerosis | 2009

C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo

Sridevi Devaraj; Mohan R. Dasu; Uma Singh; L. Vijaya Mohan Rao; Ishwarlal Jialal

C-reactive protein (CRP), the prototypic marker of inflammation, is a cardiovascular risk marker and recent in vitro studies suggest that it may promote atherogenesis. CRP promotes oxidative stress in vitro and induces tissue factor (TF) release. However, there is a paucity of data examining the effects of CRP on oxidative stress and tissue factor procoagulant activity (PCA) in vivo. Thus, we tested the effects of CRP administration on superoxide anion release and tissue factor activity and examined mechanistic pathways using a rat sterile air pouch model. Intraperitoneal administration of CRP (20mg/kg body weight) compared to human serum albumin (HuSA) increased superoxide anion release and tissue factor activity from peritoneal macrophages in vivo (p<0.01). This was confirmed using intrapouch administration of CRP (25mug/mL) compared to HuSA. Pretreatment with reactive oxygen species (ROS) scavengers or protein kinase C (PKC) inhibitor significantly abrogated CRP-induced superoxide anion release and tissue factor activity. Pretreatment with extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK) inhibitors, but not p38 mitogen-activated protein kinase (p38MAPK) significantly decreased CRP-induced superoxide anion release from macrophages in vivo. CRP-induced tissue factor activity in vivo was abrogated by pretreatment with inhibitors to p38MAPK, JNK and NFkappab (nuclear factor-kappab), but not ERK. Antibodies to Fc gamma receptors, CD32 and CD64 resulted in significant reduction in CRP-induced superoxide and tissue factor activity in vivo. Thus, CRP appears to induce oxidative stress in vivo by stimulating NADPH oxidase via PKC, ERK and JNK phosphorylation, and induces tissue factor PCA in vivo via upregulation of PKC, p38MAPK, JNK, ROS and NFkappab. CRP-induced ROS appears to precede tissue factor release. These effects are abrogated by blocking Fc gamma receptors, CD32 and CD64. This in vivo demonstration provides further evidence for a role for CRP in atherothrombosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Adiponectin Decreases C-Reactive Protein Synthesis and Secretion From Endothelial Cells

Sridevi Devaraj; Natalie J. Török; Mohan R. Dasu; David Samols; Ishwarlal Jialal

Background and Objective—Inflammation is pivotal in atherosclerosis. C-reactive protein (CRP), in addition to being a cardiovascular risk marker, may also be proatherogenic. We have previously shown that in addition to the liver, human aortic endothelial cells (HAECs) synthesize and secrete CRP. Whereas CRP levels are increased in obesity, metabolic syndrome, and diabetes, levels of adiponectin are reduced in these conditions. We tested the hypothesis that adiponectin reduces CRP synthesis and secretion in HAECs under normoglycemic (5.5 mmol/L glucose) and hyperglycemic conditions (15 mmol/L glucose). Methods and Results—Adiponectin dose-dependently reduced CRP mRNA and protein from HAECs. Adiponectin treatment of HAECs significantly decreased I&kgr;B phosphorylation and NF&kgr;B binding activity. There was no effect of adiponectin on STAT or C/EBP transcriptional activity. Adiponectin also activated AMP kinase resulting in decreased NF&kgr;B activity and decreased CRP mRNA and protein. These effects of adiponectin were mimicked by AICAR, an activator of AMPK, and reversed by inhibition of AMPK. Thus, adiponectin reduces CRP synthesis and secretion from HAECs under hyperglycemia via upregulation of AMP kinase and downregulation of NF&kgr;B. Similar findings were observed in rat primary hepatocytes. Conclusions—Thus, in obesity and diabetes, the hypoadiponectinemia could exacerbate the proinflammatory state by inducing CRP production.

Collaboration


Dive into the Mohan R. Dasu's collaboration.

Top Co-Authors

Avatar

Ishwarlal Jialal

California Northstate University College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Sridevi Devaraj

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Uma Singh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Samols

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Alaa Afify

University of California

View shared research outputs
Top Co-Authors

Avatar

Sandra Ramirez

University of California

View shared research outputs
Top Co-Authors

Avatar

Alika Bourgette

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge