Mohan R. Kaadige
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohan R. Kaadige.
Nature | 2006
Xiaobing Shi; Tao Hong; Kay L. Walter; Mark Ewalt; Eriko Michishita; Tiffany Hung; Dylan Carney; Pedro V. Peña; Fei Lan; Mohan R. Kaadige; Nicolas Lacoste; Christelle Cayrou; Foteini Davrazou; Anjanabha Saha; Bradley R. Cairns; Donald E. Ayer; Tatiana G. Kutateladze; Yang Shi; Jacques Côté; Katrin F. Chua; Or Gozani
Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains—the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a–HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a–HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.
Cancer Discovery | 2014
Tiffany J. Parmenter; Margarete Kleinschmidt; Kathryn M. Kinross; Simon T. Bond; Jason Li; Mohan R. Kaadige; Aparna Rao; Karen E. Sheppard; Willy Hugo; Gulietta M. Pupo; Richard B. Pearson; Sean L. McGee; Richard A. Scolyer; Helen Rizos; Roger S. Lo; Carleen Cullinane; Donald E. Ayer; Antoni Ribas; Ricky W. Johnstone; Rodney J. Hicks; Grant A. McArthur
UNLABELLED Deregulated glucose metabolism fulfills the energetic and biosynthetic requirements for tumor growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF-mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed pronounced and consistent decreases in glycolytic activity in BRAF-mutant melanoma cells. Moreover, we identified a network of BRAF-regulated transcription factors that control glycolysis in melanoma cells. Remarkably, this network of transcription factors, including hypoxia-inducible factor-1α, MYC, and MONDOA (MLXIP), drives glycolysis downstream of BRAF(V600), is critical for responses to BRAF inhibition, and is modulated by BRAF inhibition in clinical melanoma specimens. Furthermore, we show that concurrent inhibition of BRAF and glycolysis induces cell death in BRAF inhibitor (BRAFi)-resistant melanoma cells. Thus, we provide a proof-of-principle for treatment of melanoma with combinations of BRAFis and glycolysis inhibitors. SIGNIFICANCE BRAF is suppress glycolysis and provide strong clinical benefi t in BRAF V600 melanoma. We show that BRAF inhibition suppresses glycolysis via a network of transcription factors that are critical for complete BRAFi responses. Furthermore, we provide evidence for the clinical potential of therapies that combine BRAFis with glycolysis inhibitors.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mohan R. Kaadige; Ryan E. Looper; Sadhaasivam Kamalanaadhan; Donald E. Ayer
Glucose and glutamine are abundant nutrients required for cell growth, yet how cells sense and adapt to changes in their levels is not well understood. The MondoA transcription factor forms a heterocomplex with its obligate partner Mlx to regulate ≈75% of glucose-dependent transcription. By mediating glucose-induced activation of thioredoxin-interacting protein (TXNIP), MondoA:Mlx complexes directly repress glucose uptake. We show here that glutamine inhibits transcriptional activation of TXNIP by triggering the recruitment of a histone deacetylase-dependent corepressor to the amino terminus of MondoA. Therefore, in the presence of both glucose and glutamine, TXNIP expression is low, which favors glucose uptake and aerobic glycolysis; the Warburg effect. Consistent with MondoA functioning upstream of TXNIP, MondoA knockdown reduces TXNIP expression, elevates glucose uptake and stimulates cell proliferation. Although glutamine has many intracellular fates, a cell permeable analog of a tricarboxylic acid cycle (TCA) intermediate, α-ketoglutarate, also blocks the transcriptional activity of MondoA at the TXNIP promoter and stimulates glucose uptake. Together our data suggest that glutamine-dependent mitochondrial anapleurosis dictates glucose uptake and aerobic glycolysis by blocking MondoA:Mlx-dependent transcriptional activation of TXNIP. We propose that this previously unappreciated coordination between glutamine and glucose utilization defines a metabolic checkpoint that restricts cell growth when subthreshold levels of these essential nutrients are available.
Journal of Biological Chemistry | 2006
Mohan R. Kaadige; Donald E. Ayer
The plant homeodomain (PHD) zinc finger is one of 14 known zinc-binding domains. PHD domains have been found in more than 400 eukaryotic proteins and are characterized by a Cys4-His-Cys3 zinc-binding motif that spans 50-80 residues. The precise function of PHD domains is currently unknown; however, the PHD domains of the ING1 and ING2 tumor suppressors have been shown recently to bind phosphoinositides (PIs). We have recently identified a novel PHD-containing protein, Pf1, as a binding partner for the abundant and ubiquitous transcriptional corepressor mSin3A. Pf1 contains two PHD zinc fingers, PHD1 and PHD2, and functions to bridge mSin3A to the TLE1 corepressor. Here, we show that PHD1, but not PHD2, binds several monophosporylated PIs but most strongly to PI(3)P. Surprisingly, a polybasic region that follows the PHD1 is necessary for PI(3)P binding. Furthermore, this polybasic region binds specifically to PI(3)P when fused to maltose-binding protein, PHD2, or as an isolated peptide, demonstrating that it is sufficient for specific PI binding. By exchanging the polybasic regions between different PHD fingers we show that this region is a strong determinant of PI binding specificity. These findings establish the Pf1 polybasic region as a phosphoinositide-binding module and suggest that the PHD domains function down-stream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Liangliang Shen; John M. O'Shea; Mohan R. Kaadige; Stéphanie Cunha; Blake R. Wilde; Adam L. Cohen; Alana L. Welm; Donald E. Ayer
Significance Triple-negative breast cancers (TNBCs) are aggressive with poor clinical outcomes. Understanding the pathways that control their aggressive growth may reveal new targets for therapeutic intervention. TNBCs are highly glycolytic, providing fuel for growth promoting biosynthetic pathways. We establish that the c-Myc transcription factor drives this metabolic phenotype. Classically, the c-Myc proto-oncogene drives glycolysis by activating target genes encoding glycolytic enzymes and glucose transporters; however, we show here that c-Myc represses the expression of thioredoxin-interacting protein (TXNIP), which is a potent blocker of glucose utilization. Thus, c-Myc’s repression of TXNIP provides an additional route to c-Myc–driven glucose metabolism. Highlighting the clinical significance of our finding, a Mychigh/TXNIPlow gene signature correlates with poor overall survival in TNBC but not in other subclasses of breast cancer. Triple-negative breast cancers (TNBCs) are aggressive and lack targeted therapies. Understanding how nutrients are used in TNBCs may provide new targets for therapeutic intervention. We demonstrate that the transcription factor c-Myc drives glucose metabolism in TNBC cells but does so by a previously unappreciated mechanism that involves direct repression of thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, aerobic glycolysis, and glycolytic gene expression; thus its repression by c-Myc provides an alternate route to c-Myc–driven glucose metabolism. c-Myc reduces TXNIP gene expression by binding to an E-box–containing region in the TXNIP promoter, possibly competing with the related transcription factor MondoA. TXNIP suppression increases glucose uptake and drives a dependence on glycolysis. Ectopic TXNIP expression decreases glucose uptake, reduces cell proliferation, and increases apoptosis. Supporting the biological significance of the reciprocal relationship between c-Myc and TXNIP, a Mychigh/TXNIPlow gene signature correlates with decreased overall survival and decreased metastasis-free survival in breast cancer. The correlation between the Mychigh/TXNIPlow gene signature and poor clinical outcome is evident only in TNBC, not in other breast cancer subclasses. Mutation of TP53, which is a defining molecular feature of TNBC, enhances the correlation between the Mychigh/TXNIPlow gene signature and death from breast cancer. Because Myc drives nutrient utilization and TXNIP restricts glucose availability, we propose that the Mychigh/TXNIPlow gene signature coordinates nutrient utilization with nutrient availability. Further, our data suggest that loss of the p53 tumor suppressor cooperates with Mychigh/TXNIPlow-driven metabolic dysregulation to drive the aggressive clinical behavior of TNBC.
Journal of Biological Chemistry | 2011
Carrie A. Stoltzman; Mohan R. Kaadige; Christopher W. Peterson; Donald E. Ayer
Background: Glucose is a fundamental metabolite that is sensed by the MondoA transcription complex. MondoA elevates transcription of thioredoxin-interacting protein to restrict glucose uptake. Results: MondoA senses the phosphorylated forms of the non-glucose hexose sugars, allose, and 3-O-methylglucose and triggers an adaptive transcriptional response. Conclusion: TXNIP is regulated by non-hexose sugars in a manner that requires their metabolism, and TXNIP is part of the hexose transport curb. Significance: Sugar is a universal metabolite, so how cells respond to changes in glucose and the transcriptional level is an important question. Glucose is required for cell growth and proliferation. The MondoA·Mlx transcription factor is glucose-responsive and accumulates in the nucleus by sensing glucose 6-phosphate. One direct and glucose-induced target of MondoA·Mlx complexes is thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, and hence its regulation by MondoA·Mlx triggers a feedback loop that restricts glucose uptake. This feedback loop is similar to the “hexose transport curb” first described almost 30 years ago. We show here that MondoA responds to the non-glucose hexoses, allose, 3-O-methylglucose, and glucosamine by accumulating in the nucleus and activating TXNIP transcription. The metabolic inhibitor 3-bromopyruvate blocks the transcriptional response to allose and 3-O-methylglucose, indicating that their metabolism, or a parallel pathway, is required to stimulate MondoA activity. Our dissection of the hexosamine biosynthetic pathway suggests that in addition to sensing glucose 6-phosphate, MondoA can also sense glucosamine 6-phosphate. Analysis of glucose uptake in wild-type, MondoA-null, or TXNIP-null murine embryonic fibroblasts indicates a role for the MondoA-TXNIP regulatory circuit in the hexose transport curb, although other redundant pathways also contribute.
Transcription | 2010
Mohan R. Kaadige; Marc G. Elgort; Donald E. Ayer
Glucose and glutamine are the most abundant circulating nutrients and support the growth and proliferation of all cells, in particular rapidly growing and dividing cancer cells. Several recent studies implicate an expanded Myc network in how cells sense and utilize both glucose and glutamine. These studies reveal an unappreciated coordination between glycolysis and glutaminolysis, potentially providing new targets for therapeutic intervention in cancer.
Current Genetics | 2006
Mohan R. Kaadige; John M. Lopes
Opi1p is the only known repressor protein specific to the phospholipid biosynthetic pathway. Opi1p is required for repression in response to inositol and choline supplementation. However, the mechanism of Opi1p repression is not completely understood. In part, this is because previously identified opi1 mutants contained nonsense mutations and thus provided little insight into the mechanism of Opi1p function. We have recently reported isolating novel opi1 mutants (rum and dim mutants) that contain missense mutations. Here, we show that these opi1 mutants produce Opi1p product at levels comparable to a wild-type strain. However, these mutants mis-regulate expression of two target genes, INO2-HIS3 and INO1-lacZ, and are also defective in autoregulation. An opi1-S339F mutant is particularly interesting because it completely eliminated autoregulation, but only abated regulation of an INO1-lacZ reporter. Two of the mutations in OPI1 (V343Q and S339F) provide genetic evidence for an interaction between Opi1p and the Ino2p activator since they reside in a region of Opi1p recently shown to interact with Ino2p in vitro. A third mutation (L252F) resides in a region of Opi1p with no known function.
Molecular Microbiology | 2003
Mohan R. Kaadige; John M. Lopes
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p‐mediated repression and Ume6p‐mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2‐HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild‐type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Δ mutation that overexpress the INO2‐HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Δ mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Δ and rpd3Δ mutants on INO2‐cat expression. Surprisingly, the sin3Δ allele overexpressed INO2‐cat, whereas the rpd3Δ mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1‐cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.
Molecular and Cellular Biology | 2015
Mohan R. Kaadige; Jingye Yang; Blake R. Wilde; Donald E. Ayer
ABSTRACT Mammalian target of rapamycin (mTOR) integrates multiple signals, including nutrient status, growth factor availability, and stress, to regulate cellular and organismal growth. How mTOR regulates transcriptional programs in response to these diverse stimuli is poorly understood. MondoA and its obligate transcription partner Mlx are basic helix-loop-helix leucine zipper (bHLHZip) transcription factors that sense and execute a glucose-responsive transcriptional program. MondoA-Mlx complexes activate expression of thioredoxin-interacting protein (TXNIP), which is a potent inhibitor of cellular glucose uptake and aerobic glycolysis. Both mTOR and MondoA are central regulators of glucose metabolism, yet whether they interact physically or functionally is unknown. We show that inhibition of mTOR induces MondoA-dependent expression of TXNIP, coinciding with reduced glucose uptake. Mechanistically, mTOR binds to MondoA in the cytoplasm and prevents MondoA-Mlx complex formation, restricting MondoAs nuclear entry and reducing TXNIP expression. Further, we show that mTOR inhibitors and reactive oxygen species (ROS) regulate interaction between MondoA and mTOR in an opposing manner. Like mTORs suppression of the MondoA-TXNIP axis, MondoA can also suppress mTOR complex 1 (mTORC1) activity via its direct transcriptional regulation of TXNIP. Collectively, these studies reveal a regulatory relationship between mTOR and the MondoA-TXNIP axis that we propose contributes to glucose homeostasis.