Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohana K. Rajpalke is active.

Publication


Featured researches published by Mohana K. Rajpalke.


Applied Physics Letters | 2013

Growth and properties of GaSbBi alloys

Mohana K. Rajpalke; W. M. Linhart; Michael Alexander Birkett; K. M. Yu; David O. Scanlon; John Buckeridge; Tim Jones; M. J. Ashwin; T. D. Veal

Molecular-beam epitaxy has been used to grow GaSb 1− x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 A change in lattice constant.


Journal of Applied Physics | 2014

High Bi content GaSbBi alloys

Mohana K. Rajpalke; W. M. Linhart; Michael Alexander Birkett; K. M. Yu; J. Alaria; Jan Kopaczek; R. Kudrawiec; Tim Jones; M. J. Ashwin; T. D. Veal

The epitaxial growth, structural, and optical properties of GaSb 1– x Bi x alloys have been investigated. The Bi incorporation into GaSb is varied in the range 0 < x ≤ 9.6% by varying the growth rate (0.31–1.33 μm h−1) at two growth temperatures (250 and 275 °C). The Bi content is inversely proportional to the growth rate, but with higher Bi contents achieved at 250 than at 275 °C. A maximum Bi content of x = 9.6% is achieved with the Bi greater than 99% substitutional. Extrapolating the linear variation of lattice parameter with Bi content in the GaSbBi films enabled a zinc blende GaBi lattice parameter to be estimated of 6.272 A. The band gap at 300 K of the GaSbBi epitaxial layers decreases linearly with increasing Bi content down to 410 ± 40 meV (3 μm) for x = 9.6%, corresponding to a reduction of ∼35 meV/%Bi. Photoluminescence indicates a band gap of 490 ± 5 meV at 15 K for x = 9.6%.


Applied Physics Letters | 2011

Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films

Basanta Roul; Mohana K. Rajpalke; Thirumaleshwara N. Bhat; Mahesh Kumar; A. T. Kalghatgi; S. B. Krupanidhi; Nitesh Kumar; A. Sundaresan

We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm−1 in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.


Nano Letters | 2015

Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy

Qiandong Zhuang; Ezekiel Anyebe; Rui Chen; H. Y. Liu; Ana M. Sanchez; Mohana K. Rajpalke; T. D. Veal; Zhiming Wang; yongzheng huang; Handong Sun

For the first time, we report a complete control of crystal structure in InAs(1-x)Sb(x) NWs by tuning the antimony (Sb) composition. This claim is substantiated by high-resolution transmission electron microscopy combined with photoluminescence spectroscopy. The pure InAs nanowires generally show a mixture of wurtzite (WZ) and zinc-blende (ZB) phases, where addition of a small amount of Sb (∼2-4%) led to quasi-pure WZ InAsSb NWs, while further increase of Sb (∼10%) resulted in quasi-pure ZB InAsSb NWs. This phase transition is further evidenced by photoluminescence (PL) studies, where a dominant emission associated with the coexistence of WZ and ZB phases is present in the pure InAs NWs but absent in the PL spectrum of InAs0.96Sb0.04 NWs that instead shows a band-to-band emission. We also demonstrate that the Sb addition significantly reduces the stacking fault density in the NWs. This study provides new insights on the role of Sb addition for effective control of nanowire crystal structure.


Nano Research | 2015

Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1−xSbx nanowires

Ezekiel Anyebe; Mohana K. Rajpalke; T. D. Veal; Chongjun Jin; Zhiming Wang; Qiandong Zhuang

The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is demonstrated that trace amounts of Sb flux are capable of tuning the geometry of NWs, i.e., enhancing lateral growth and suppressing axial growth. We attribute this behavior to the surfactant effect of Sb which results in modifications to the kinetic and thermodynamic processes. A thermodynamic mechanism that accounts for Sb segregation in InAsSb NWs is also elucidated. This study opens a new route towards precisely controlled NW geometries by means of Sb addition.


Journal of Physics D | 2014

Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime

M. P. Polak; Pawel Scharoch; R. Kudrawiec; Jan Kopaczek; M.J. Winiarski; W. M. Linhart; Mohana K. Rajpalke; K. M. Yu; Tim Jones; M. J. Ashwin; T. D. Veal

Photoreflectance (PR) spectroscopy was applied to study the band gap in GaSb1−xBix alloys with Bi < 5%. Obtained results have been interpreted in the context of ab initio electronic band structure calculations in which the supercell (SC) based calculations are joined with the alchemical mixing (AM) approximation applied to a single atom in the cell. This approach, which we call SC-AM, allows on the one hand to study alloys with a very small Bi content, and on the other hand to avoid limitations characteristic of a pure AM approximation. It has been shown that the pure AM does not reproduce the GaSb1−xBix band gap determined from PR while the agreement between experimental data and the ab initio calculations of the band gap obtained within the SC-AM approach is excellent. These calculations show that the incorporation of Bi atoms into the GaSb host modifies both the conduction and the valence band. The shift rates found in this work are respectively −26.0 meV per % Bi for the conduction band and 9.6 meV per % Bi for the valence band that consequently leads to a reduction in the band gap by 35.6 meV per % Bi. The shifts found for the conduction and valence band give a ~27% (73%) valence (conduction) band offset between GaSb1−xBix and GaSb. The rate of the Bi-related shift for the split-off band is −7.0 meV per % Bi and the respective increase in the spin–orbit split-off is 16.6 meV per % Bi.


Applied Physics Letters | 2013

Temperature dependence of the band gap of GaSb1−xBix alloys with 0 < x ≤ 0.042 determined by photoreflectance

Jan Kopaczek; R. Kudrawiec; W. M. Linhart; Mohana K. Rajpalke; K. M. Yu; Tim Jones; M. J. Ashwin; J. Misiewicz; T. D. Veal

GaSb1−xBix layers with 0 < x ≤ 0.042 have been studied by photoreflectance in 15–290 K temperature range. We found that due to the incorporation of Bi atoms into the GaSb host, the E0 band gap-related transition redshifts (∼30 meV per 1% Bi) and significantly broadens. The shift of the E0 transition in the temperature range 10–270 K has been found to be ∼70 meV, very similar to the energy shift in GaSb over the same temperature range. We analyzed the energy and broadening of the E0 transition using the Varshni and Bose-Einstein formulas and found that the Varshni and Bose-Einstein parameters of GaSb1−xBix are similar to those of GaSb. Moreover we concluded that the inhomogeneities in GaSb1−xBix alloys is less important than in dilute bismide arsenides since Bi atoms are more similar to Sb atoms (in electronegativities and ionic sizes).


Applied Physics Letters | 2014

Bi-induced band gap reduction in epitaxial InSbBi alloys

Mohana K. Rajpalke; W. M. Linhart; K. M. Yu; Michael Alexander Birkett; J. Alaria; John James Bomphrey; Shawn Sallis; L. F. J. Piper; Tim Jones; M. J. Ashwin; T. D. Veal

The properties of molecular beam epitaxy-grown InSb 1− x Bi x alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 A. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb 0.976Bi0.024, a reduction of ∼35 meV/%Bi.


Journal of Applied Physics | 2011

Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

Thirumaleshwara N. Bhat; Mohana K. Rajpalke; Basanta Roul; Mahesh Kumar; S. B. Krupanidhi

Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic (β) and hexagonal (α) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 °C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 °C. Core-level photoelectron spectroscopy of SixNy layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulat...


Journal of Applied Physics | 2011

Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes

Basanta Roul; Mohana K. Rajpalke; Thirumaleshwara N. Bhat; Mahesh Kumar; Neeraj Sinha; A. T. Kalghatgi; S. B. Krupanidhi

InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively.

Collaboration


Dive into the Mohana K. Rajpalke's collaboration.

Top Co-Authors

Avatar

Basanta Roul

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

S. B. Krupanidhi

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. D. Veal

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Jones

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Jan Kopaczek

Wrocław University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge