Mohd Aamir
Banaras Hindu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohd Aamir.
Frontiers in Plant Science | 2016
Mukesh Meena; Andleeb Zehra; Manish Kumar Dubey; Mohd Aamir; Vijai Kumar Gupta; R. S. Upadhyay
In the present study, we have evaluated the comparative biochemical defense response generated against Alternaria alternata and its purified toxins viz. alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA). The necrotic lesions developed due to treatment with toxins were almost similar as those produced by the pathogen, indicating the crucial role of these toxins in plant pathogenesis. An oxidative burst reaction characterized by the rapid and transient production of a large amount of reactive oxygen species (ROS) occurs following the pathogen infection/toxin exposure. The maximum concentration of hydrogen peroxide (H2O2) produced was reported in the pathogen infected samples (22.2-fold) at 24 h post inoculation followed by TeA (18.2-fold), AOH (15.9-fold), and AME (14.1-fold) in treated tissues. 3,3′- Diaminobenzidine staining predicted the possible sites of H2O2 accumulation while the extent of cell death was measured by Evans blue dye. The extent of lipid peroxidation and malondialdehyde (MDA) content was higher (15.8-fold) at 48 h in the sample of inoculated leaves of the pathogen when compared to control. The cellular damages were observed as increased MDA content and reduced chlorophyll. The activities of antioxidative defense enzymes increased in both the pathogen infected as well as toxin treated samples. Superoxide dismutase (SOD) activity was 5.9-fold higher at 24 h post inoculation in leaves followed by TeA (5.0-fold), AOH (4.1-fold) and AME (2.3-fold) treated leaves than control. Catalase (CAT) activity was found to be increased upto 48 h post inoculation and maximum in the pathogen challenged samples followed by other toxins. The native PAGE results showed the variations in the intensities of isozyme (SOD and CAT) bands in the pathogen infected and toxin treated samples. Ascorbate peroxidase (APx) and glutathione reductase (GR) activities followed the similar trend to scavenge the excess H2O2. The reduction in CAT activities after 48 h post inoculation demonstrate that the biochemical defense programming shown by the host against the pathogen is not well efficient resulting in the compatible host-pathogen interaction. The elicitor (toxins) induced biochemical changes depends on the potential toxic effects (extent of ROS accumulation, amount of H2O2 produced). Thus, a fine tuning occurs for the defense related antioxidative enzymes against detoxification of key ROS molecules and effectively regulated in tomato plant against the pathogen infected/toxin treated oxidative stress. The study well demonstrates the acute pathological effects of A. alternata in tomato over its phytotoxic metabolites.
Frontiers in Plant Science | 2017
Mohd Aamir; Vinay Kumar Singh; Mukesh Meena; R. S. Upadhyay; Vijai Kumar Gupta; Surendra Singh
The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial flanking sequences also get involved in binding. In contrast, the SlWRKY3 made interaction with RKYGQK along with the residues from zinc finger motifs. Protein-protein interactions studies were done using STRING version 10.0 to explore all the possible protein partners involved in associative functional interaction networks. The Gene ontology enrichment analysis revealed the functional dimension and characterized the identified WRKYs based on their functional annotation.
Frontiers in Microbiology | 2017
Manish Kumar Dubey; Andleeb Zehra; Mohd Aamir; Mukesh Meena; Laxmi Ahirwal; Siddhartha Singh; Shruti Shukla; R. S. Upadhyay; Rubén Bueno-Marí; Vivek K. Bajpai
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Archive | 2017
Mukesh Meena; Prashant Swapnil; Andleeb Zehra; Mohd Aamir; Manish Kumar Dubey; R. S. Upadhyay
Plant growth-promoting microorganisms (PGPMs) constitute the microbes that are intricately associated with the plant system and may consist of rhizospheric bacteria, fungi, mycorrhiza, endophytic fungi, actinomycetes, or those having the mutualistic relationship or nonsymbiotic relationship with plants. One of the most remarkable features of these microbes is the adoption of certain ecological niches or may be occupied with multiple niches at a time in the soil ecosystem that makes way for other species to establish the mutual interactions (physical or biochemical) with other microbes (bipartite) or with plants (tripartite). The plant growth promotion by these microbes involves common mechanisms such as nitrogen fixation, siderophore production, phytohormone production, solubilization of mineral phosphates and secretion of novel secondary metabolites having positive effect on plant health. Some beneficial fungi have been found to promote plant growth through increased photosynthetic rate with improved mineral use efficiency and nutrient uptake, as inoculating these microbes with plants lead into increased chlorophyll content and biomass. These indigenous microbes have been also reported to counteract the different abiotic and biotic stress conditions. The mutual interaction observed between beneficial fungi and pathogenic microbes has been investigated at microscopic level which involves certain physical changes such as coiling of beneficial hyphae around the pathogenic hyphae and some cellular changes such as dissolution of host cytoplasm or secretion of antimicrobial compounds or lytic enzymes in the nearby localities that check the growth and reproduction of pathogenic species. The comprehensive knowledge of the functional mechanism of plant growth promotion by these microbes will help to develop strategies against damages covered by various abiotic and biotic stress conditions, and therefore will help in increasing the agricultural production at a global scale.
PLOS ONE | 2018
Mohd Aamir; Vinay Kumar Singh; Manish Kumar Dubey; Sarvesh Pratap Kashyap; Andleeb Zehra; R. S. Upadhyay; Surendra Singh
The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues.
New and Future Developments in Microbial Biotechnology and Bioengineering#R##N#Microbial Cellulase System Properties and Applications | 2016
Shalini Singh; Vivek Singh; Mohd Aamir; Manish Kumar Dubey; Jai Singh Patel; R. S. Upadhyay; Vijai Kumar Gupta
The paper and packaging industry is an important part of the global economy and plays a critical role in the world economy. Cellulase, a complex enzyme produced by a number of microorganisms, has tremendous potential application in the pulp and paper industry. Cellulase contributes 10% of the worldwide industrial enzyme demand, and there is tremendous potential for cellulase biotechnology in pulp and paper manufacturing to grow steadily commercially, and to give rise to new possibilities. Cellulase, xylanase, laccase, and lipase are the most important enzymes that can be used in the pulp and paper processes. This prospective study aims to enhance the understanding of the most important advanced uses of cellulases for providing benefits to the pulp and paper industry in various areas like increased pulp yield, improved fiber properties, enhanced paper recycling, reduced processing and environmental problems, and energy efficiency.
New and Future Developments in Microbial Biotechnology and Bioengineering#R##N#Penicillum System Properties and Applications | 2018
Mukesh Meena; Andleeb Zehra; Manish Kumar Dubey; Mohd Aamir; R. S. Upadhyay
Abstract Microbial enzymes play an important role in the processing of feed and food products. These enzymes are major food additives that convert complex molecules into simpler ones to transform nonconsumable raw materials to consumable and useful foods products. The processing of food products through enzymatic treatment improves shelf-life and provides quality attributes like texture and flavor. Today, the demands of processed and quality foods are on the rise due to issues related to food safety and hygiene. Public awareness for health consciousness drives the development of more food and beverages industries.
Frontiers in Pharmacology | 2018
Mohd Aamir; Vinay Kumar Singh; Manish Kumar Dubey; Mukesh Meena; Sarvesh Pratap Kashyap; Sudheer Kumar Katari; R. S. Upadhyay; Amineni Umamaheswari; Surendra Singh
Vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (FOL) is one of the most devastating diseases, that delimits the tomato production worldwide. Fungal short-chain dehydrogenases/reductases (SDRs) are NADP(H) dependent oxidoreductases, having shared motifs and common functional mechanism, have been demonstrated as biochemical targets for commercial fungicides. The 1,3,6,8 tetra hydroxynaphthalene reductase (T4HNR) protein, a member of SDRs family, catalyzes the naphthol reduction reaction in fungal melanin biosynthesis. We retrieved an orthologous member of T4HNR, (complexed with NADP(H) and pyroquilon from Magnaporthe grisea) in the FOL (namely; FOXG_04696) based on homology search, percent identity and sequence similarity (93% query cover; 49% identity). The hypothetical protein FOXG_04696 (T4HNR like) had conserved T-G-X-X-X-G-X-G motif (cofactor binding site) at N-terminus, similar to M. grisea (1JA9) and Y-X-X-X-K motif, as a part of the active site, bearing homologies with two fungal keto reductases T4HNR (M. grisea) and 17-β-hydroxysteroid dehydrogenase from Curvularia lunata (teleomorph: Cochliobolus lunatus PDB ID: 3IS3). The catalytic tetrad of T4HNR was replaced with ASN115, SER141, TYR154, and LYS158 in the FOXG_04696. The structural alignment and superposition of FOXG_04696 over the template proteins (3IS3 and 1JA9) revealed minimum RMSD deviations of the C alpha atomic coordinates, and therefore, had structural conservation. The best protein model (FOXG_04696) was docked with 37 fungicides, to evaluate their binding affinities. The Glide XP and YASARA docked complexes showed discrepancies in results, for scoring and ranking the binding affinities of fungicides. The docked complexes were further refined and rescored from their docked poses through 50 ns long MD simulations, and binding free energies (ΔGbind) calculations, using MM/GBSA analysis, revealed Oxathiapiprolin and Famoxadone as better fungicides among the selected one. However, Famoxadone had better interaction of the docked residues, with best protein ligand contacts, minimum RMSD (high accuracy of the docking pose) and RMSF (structural integrity and conformational flexibility of docking) at the specified docking site. The Famoxadone was found to be acceptable based on in silico toxicity and in vitro growth inhibition assessment. We conclude that the FOXG_04696, could be employed as a novel candidate protein, for structure-based design, and screening of target fungicides against the FOL pathogen.
Frontiers in Pharmacology | 2018
Manish Kumar Dubey; Mohd Aamir; Manish Singh Kaushik; Saumya Khare; Mukesh Meena; Surendra Singh; R. S. Upadhyay
Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics, toxicological aspects, control and prevention strategies, and other management aspects of PR toxin with paying special attention on economic impacts with intended legislations for avoiding PR toxin contamination with respect to food security and other biosafety purposes.
Archive | 2016
Richa Raghuwanshi; Shalini Singh; Mohd Aamir; Amrita Saxena; Vijai Kumar Gupta; R. S. Upadhyay
During the last two decades, there has been increasing interest in biodiesel as an alternative biofuel. Oleaginous fungi can represent a sustainable alternative to plant oil for the production of biodiesel and they can accumulate intracellular lipids up to 70 % under stress condition. Oleaginous fungi have given a new turn to fuel generation, as their lipids are rich in Tri-acyl glyceraldehydes (TAG) and specific polyunsaturated fatty acids (PUFA). With the increase in population, fuel production will be highly expensive and therefore a promising alternative is to look at microbial oil technology. This chapter focuses on the important fungi and enzymes involved in biofuel production and recent technologies for lipid extraction, which provide a platform for a viable and successful development in an industrial production process.