Mohd Ashquin
Indian Institute of Toxicology Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohd Ashquin.
Toxicology | 2010
Mohd Javed Akhtar; Maqusood Ahamed; Sudhir Kumar; Huma Siddiqui; Govil Patil; Mohd Ashquin; Iqbal Ahmad
Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH.
Toxicology in Vitro | 2010
Mohd Javed Akhtar; Sudhir Kumar; R.C. Murthy; Mohd Ashquin; Mohd Imran Khan; Govil Patil; Iqbal Ahmad
Talc particles, the basic ingredient in different kinds of talc-based cosmetic and pharmaceutical products, pose a health risk to pulmonary and ovarian systems due to domestic and occupational exposures. Two types of talc nanoparticles depending on the source of geographical origin - indigenous- and commercial talc nanoparticles were assessed for their potential in vitro toxicity on A(549) cells; along with indigenous conventionally used microtalc particles. Cell viability, determined through live/dead staining and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, decreased as a function of concentration, origin and size of particles. Both varieties of talc nanoparticles differentially induced lipid peroxidation (LPO), which was correlated with the pattern of lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, and glutathione (GSH) depletion. Relatively higher cytotoxicity of indigenous nanotalc could be attributed to its higher content of iron as compared to commercial nanotalc. The known scavenger of ROS, l-ascorbic acid significantly inhibited LPO induction due to talc particles. Data suggest that nanotalc toxicity on A(549) cells was mediated through oxidative stress, wherein role of iron-mediated LPO was much pronounced in differential cytotoxicity.
Environmental Science and Pollution Research | 2010
Mohd Imran Khan; Iqbal Ahmad; Abbas Ali Mahdi; Mohd Javed Akhtar; Najmul Islam; Mohd Ashquin; Thuppil Venkatesh
Background, aim, and scopeLead, a major contaminant, is highly used in paint manufacturing due to its anticorrosive properties. Recent reports indicated high lead content among Indian paints used for commercial purposes. Painters are continuously exposed to these lead containing paints during painting of both commercial as well as residential buildings. Lead is well-known for its genotoxicty in occupational workers; however, in Indian painters the genotoxic effects of lead have not been reported to date. Therefore we aimed to study the genotoxic end points in painters due to their long-term exposure to these high lead-containing Indian paints.Materials and methodsStudy group selection was made after a questionnaire administration, which included questions about lifestyle and medical history to exclude exposure to the other potential sources of genotoxics. Blood and buccal cell samples were obtained from 30 male painters and from a similar number of age-matched controls of same location with no occupational exposure to lead. Blood lead levels (Pb-B) were measured in painters and controls. Micronucleus (MN) frequencies and nuclear changes, i.e., karyorrhexis, karyolysis, broken egg, and binucleated, were investigated in buccal epithelial cells.ResultsPainters had significantly (P < 0.01) greater lead levels in blood than the control group. MN frequencies and nuclear changes in buccal epithelial cells were also significantly (P < 0.01) elevated in painters as compared with control subjects. Regression analysis also revealed significant (P < 0.01) association of Pb-B with all the genotoxic endpoints in painters. Cytogenetic damage was significantly associated with Pb-B as no other co-founding factors (smoking, alcohols) showed significant difference between both groups.DiscussionLead is widely used in paints which may serve as potential source of exposure among painters due to their long-term engagement with paints. Our results clearly demonstrated genotoxicity among the exposed population as evident from increase micronucleus frequencies, frequent nuclear changes, and apoptosis. Many studies had previously related nuclear change events in buccal epithelial cells with the progression of different carcinomas. Furthermore in-depth investigations with larger sample size are needed to provide evidence to this effect.ConclusionsHere, we report cytogenetic toxicity to the exposed population by the high lead containing paints from India for the first time. Frequent, high and unregulated use of lead in paints may cause genetic mutation and may accelerate cytogenetic damage which may further lead to different carcinomas in painters. These findings need to be considered and necessary steps should be taken to protect the occupational workers engaged with these high lead-containing paints.RecommendationsThe use of lead in paints is completely unregulated in India and routine surveillance of paints for lead content is still lacking. These paints are readily available in markets and are also used in other products (jewelry, miniblinds) which could be exported to other countries including United States and Europe. Serious consideration should be given to the inclusion of regulations and bans on the use of lead in paints. Moreover, attention should also be paid towards the use of various protective measures (face-masks, hand gloves, and separate clothes) by the workers as safe work practices during working periods.
Food and Chemical Toxicology | 1995
Iqbal Ahmad; K. Krishnamurthi; J.M. Arif; Mohd Ashquin; N. Mahmood; M. Athar; Qamar Rahman
Asbestos is known to induce oxidative stress in the lung. The consumption of butylated hydroxyanisole (BHA) in preserved food and soft drinks is increasing in the general population, which includes workers in asbestos factories. Because there is no information on the effect of co-exposure to chrysotile and BHA, the time-dependent effects of a single intratracheal dose of chrysotile (1 mg per mouse) and a single ip dose of BHA (350 mg/kg body weight) on various indices of oxidative stress such as lipid peroxidation, hydrogen peroxide generation, glutathione peroxidase (GPX), glutathione reductase (GR), catalase, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione (GSH) were followed for up to 14 days. Microsomal lipid peroxidation (as well as that induced by NADPH) was significantly enhanced by BHA in the chrysotile-exposed group. GPX and GR activities in the same group were gradually decreased by BHA. Non-significant modulation of catalase activity by BHA was also noted. BHA induces GSH to a significant extent in lungs exposed with chrysotile. An increase in the G6PDH activity was maximal (19%; P < 0.05) at day 3. The results clearly demonstrate that BHA enhances chrysotile-induced oxidative stress in the lung.
Bulletin of Environmental Contamination and Toxicology | 1984
Shashi Khandelwal; Mohd Ashquin; S.K. Tandon
With a view to explore the influence of essential metals in manganese intoxication, the effect of calcium, iron or zinc supplementation on the uptake of manganese and on the activity of manganese sensitive enzymes, succinic dehydrogenase and cytochrome oxidase in brain and liver of rat was investigated. The choice of the two mitochondrial enzymes was based on the fact that the mitochondria are the chief site of manganese accumulation and their activity in brain, liver and blood of rats is significantly influenced by manganese.
Indian Journal of Occupational and Environmental Medicine | 2007
Furquan Ahmad Ansari; Vipin Bihari; Subodh K. Rastogi; Mohd Ashquin; Iqbal Ahmad
About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants) are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile) in the occupational as well as ambient air environment of the asbestos-cement (AC) sheets industry using membrane filter method of Bureau of Indian Standards (BIS). The fibre concentrations in 15 samples collected in the occupational environment at ingredient feeding site, sheet-producing site, fibre godown were 0.079, 0.057 and 0.078 f/cc, respectively and in five samples from surrounding ambient air at factory gate resulted fibre concentration of 0.071 f/cc. All the samples have shown fibre concentration lower than the threshold limit values (TLVs) prescribed by BIS. Morphological analysis of samples, further under phase contrast and polarized microscopy indicates the presence of chrysotile asbestos, which acts as carcinogen as well as co-carcinogen. A clinical examination of exposed subjects reveals that there was no case of clubbing, crepitation, ronchi and dyspnea on exertion; however, obstruction and restriction were 10.9 per cent and 25 per cent in exposed subjects, respectively while in control there were 12 per cent and 28 per cent, respectively. The study revealed that chrysotile asbestos is emitted in the occupational as well as ambient environment that may cause adverse health impact.
Chemosphere | 2011
Iqbal Ahmad; Huma Siddiqui; Mohd Javed Akhtar; Mohd Imran Khan; Govil Patil; Mohd Ashquin; Devendra Kumar Patel; Jamal M. Arif
In this in vitro study we investigated the toxic responses in hepatocytes treated with occupational dust to which workers are exposed in bone-based industrial units. The present study investigated the toxicity mechanism of bone-based occupational dust, from a particular industrial unit, on isolated rat hepatocytes. The hepatocytes were isolated by collagenase perfusion method and cell viability was determined by trypan blue exclusion and MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay treated with occupational dust at 0.1-1.0 mgmL(-1), for 120 min. The cell viability decreased significantly in a concentration-dependent manner. Dust induced significant membrane damage measured by lactate dehydrogenase (LDH) and glutathione (GSH) release in culture media for 30-, 60- and 120 min treatment duration. The toxicity was found to be correlated with the induction of lipid peroxidation (LPO). In addition, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) generation by occupational dusts were also found to be time- and concentration-dependent. Over all the present study provides initial evidences for the toxic potential of occupational dust generated in bone-based industries and, therefore, the dust exposure to workers in unorganized industrial units should be controlled.
Chemosphere | 2007
Furquan Ahmad Ansari; Iqbal Ahmad; Mohd Ashquin; Mohammad Yunus; Qamar Rahman
Annals of Clinical and Laboratory Science | 1984
S.K. Tandon; Shashi Khandelwal; A. K. Mathur; Mohd Ashquin
Bulletin of Environmental Contamination and Toxicology | 1992
Mohd. Aslam; Mohd Ashquin; Qamar Rahman