Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohd Shahrul Mohd Nadzir is active.

Publication


Featured researches published by Mohd Shahrul Mohd Nadzir.


Science of The Total Environment | 2014

Long term assessment of air quality from a background station on the Malaysian Peninsula

Mohd Talib Latif; Doreena Dominick; Fatimah Ahamad; Firoz Khan; Liew Juneng; Firdaus Mohamad Hamzah; Mohd Shahrul Mohd Nadzir

Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.


Philosophical Transactions of the Royal Society B | 2011

The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: Coastal processes, land-use change and air quality

J. A. Pyle; N. J. Warwick; N. R. P. Harris; Mohd Radzi Abas; A. T. Archibald; M. J. Ashfold; Kirsti Ashworth; M. P. Barkley; G. D. Carver; Kelly Chance; J. R. Dorsey; D. Fowler; Siegfried Gonzi; B. Gostlow; C. N. Hewitt; Thomas P. Kurosu; James Lee; S. B. Langford; G. P. Mills; Sarah Moller; A. R. MacKenzie; Alistair J. Manning; Pawel K. Misztal; Mohd Shahrul Mohd Nadzir; E. Nemitz; Hannah Newton; L. M. O'Brien; S. Ong; D. E. Oram; Paul I. Palmer

We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NOx emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.


Journal of The Air & Waste Management Association | 2015

Physicochemical factors and sources of particulate matter at residential urban environment in Kuala Lumpur

Firoz Khan; Mohd Talib Latif; Liew Juneng; Norhaniza Amil; Mohd Shahrul Mohd Nadzir; Hossain Mohammed Syedul Hoque

Long-term measurements (2004–2011) of PM10 (particulate matter with an aerodynamic diameter <10 μm) and trace gases (carbon monoxide [CO], ozone [O3], nitrogen oxide [NO], oxides of nitrogen [NOx], nitrogen dioxide [NO2], sulfur dioxide [SO2], methane [CH4], nonmethane hydrocarbon [NMHC]) have been conducted to study the effect of physicochemical factors on the PM10 concentration. In addition, this study includes source apportionment of PM10 in Kuala Lumpur urban environment. An advanced principal component analysis (PCA) technique coupled with absolute principal component scores (APCS) and multiple linear regression (MLR) has been applied. The average annual concentration of PM10 for 8 yr is 51.3 ± 25.8 μg m−3, which exceeds the Recommended Malaysian Air Quality Guideline (RMAQG) and international guideline values. Detail analysis shows the dependency of PM10 on the linear changes of the motor vehicles in use and the amount of biomass burning, particularly from Sumatra, Indonesia, during southwesterly monsoon. The main sources of PM10 identified by PCA-APCS-MLR are traffic combustion (28%), ozone coupled with meteorological factors (20%), and windblown particles (1%). However, the apportionment procedure left 28.0 μg m−3, that is, 51% of PM10 undetermined. Implications: Air quality is always a top concern around the globe. Especially in the South Asian regions, measures are not yet sufficient; as revealed in our studies, the concentrations of particulate matters exceed the tolerable limits. Long-term data analysis and characterization of particular matters and their sources will aid the policy makers and the concerned authority to adapt measures and policies according to the circumstances. Additionally, similar intensive studies will give insight about future implications of air quality management.


Journal of Geophysical Research | 2016

Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon)

Firoz Khan; Nor Azura Sulong; Mohd Talib Latif; Mohd Shahrul Mohd Nadzir; Norhaniza Amil; Dini Fajrina Mohd Hussain; Vernon Lee; Puteri Nurafidah Hosaini; Suhana Shaharom; Nur Amira Yasmin Mohd Yusoff; Hossain Mohammed Syedul Hoque; Jing Xiang Chung; Mazrura Sahani; Norhayati Mohd Tahir; Liew Juneng; Khairul Nizam Abdul Maulud; Sharifah Mastura Syed Abdullah; Yusuke Fujii; Susumu Tohno; Akira Mizohata

A comprehensive assessment of fine particulate matter (PM2.5) compositions during the Southeast Asia dry season is presented. Samples of PM2.5 were collected between 24 June and 14 September 2014 using a high-volume sampler. Water-soluble ions, trace species, rare earth elements, and a range of elemental carbon (EC) and organic carbon were analyzed. The characterization and source apportionment of PM2.5 were investigated. The results showed that the 24 h PM2.5 concentration ranged from 6.64 to 68.2 µg m−3. Meteorological driving factors strongly governed the diurnal concentration of aerosol, while the traffic in the morning and evening rush hours coincided with higher levels of CO and NO2. The correlation analysis for non sea-salt K+-EC showed that EC is potentially associated with biomass burning events, while the formation of secondary organic carbon had a moderate association with motor vehicle emissions. Positive matrix factorization (PMF) version 5.0 identified the sources of PM2.5: (i) biomass burning coupled with sea salt [I] (7%), (ii) aged sea salt and mixed industrial emissions (5%), (iii) road dust and fuel oil combustion (7%), (iv) coal-fired combustion (25%), (v) mineral dust (8%), (vi) secondary inorganic aerosol (SIA) coupled with F− (15%), and (vii) motor vehicle emissions coupled with sea salt [II] (24%). Motor vehicle emissions, SIA, and coal-fired power plant are the predominant sources contributing to PM2.5. The response of the potential source contribution function and Hybrid Single-Particle Lagrangian Integrated Trajectory backward trajectory model suggest that the outline of source regions were consistent to the sources by PMF 5.0.


Environmental Science and Pollution Research | 2017

Characterization of rainwater chemical composition after a Southeast Asia haze event: insight of transboundary pollutant transport during the northeast monsoon

Mohd Shahrul Mohd Nadzir; Chin Yik Lin; Firoz Khan; Mohd Talib Latif; Doreena Dominick; Haris Hafizal Abdul Hamid; Noorlin Mohamad; Khairul Nizam Abdul Maulud; Muhammad Ikram Abdul Wahab; Nurul Farahana Kamaludin; Mohamad Azwani Shah Mat Lazim

Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (<pH 4.00) during the haze to non-haze transitional period, suggesting that the deposition rate of sulfate and nitrate in the atmosphere via the precipitation process was relatively lower compared to the mineral components. Zinc, nitrate, and calcium, which were the predominant elements in the first rainwater samples. Besides, the results of the SEM-EDS indicated that the zinc was possibly originated from anthropogenic activities which are consistent with the results obtained from EF. The BT model showed that pollutants transported from the mainland of Indo-China and the marine region in the South China Sea were responsible for the high pollution event in the study area. These findings can be useful in identifying contributions of pollutants from single or multiple sources in rainwater samples during haze episodes.


Science of The Total Environment | 2018

Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas

Firoz Khan; Khairul Nizam Abdul Maulud; Mohd Talib Latif; Jing Xiang Chung; Norhaniza Amil; Azwani Alias; Mohd Shahrul Mohd Nadzir; Mazrura Sahani; Maznorizan Mohammad; Mohd Firdaus Jahaya; Hanashriah Hassan; Farah Jeba; Norhayati Md Tahir; Sharifah Mastura Syed Abdullah

Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.


Science of The Total Environment | 2016

Seasonal and long term variations of surface ozone concentrations in Malaysian Borneo

Mohd Talib Latif; Doreena Dominick; Fatimah Ahamad; Nur Shuhada Ahamad; Firoz Khan; Liew Juneng; Chung Jing Xiang; Mohd Shahrul Mohd Nadzir; Andrew Robinson; Marzuki Ismail; Mohammed Iqbal Mead; N. R. P. Harris

Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface O3 concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface O3 data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of O3 recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100ppbv. The hourly average and maximum O3 concentrations of 31 and 92ppbv reported at Bintulu (S3) respectively were the highest among the O3 concentrations recorded at the sampling stations. Further investigation on O3 precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised O3 values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of O3 titration by NO during weekdays. The results also show that there are distinct seasonal variations in O3 across Borneo. High surface O3 concentrations were usually observed between August and September at all stations with the exception of station S7 on the east coast. Majority of the stations (except S1 and S6) have recorded increasing averaged maximum concentrations of surface O3 over the analysed years. Increasing trends of NO2 and decreasing trends of NO influence the yearly averaged maximum of O3 especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3.


Science of The Total Environment | 2019

Airborne particles in the city center of Kuala Lumpur: Origin, potential driving factors, and deposition flux in human respiratory airways

Firoz Khan; Ahmad Hazuwan Hamid; Aynul Bari; Abdul Basit Ahmad Tajudin; Mohd Talib Latif; Mohd Shahrul Mohd Nadzir; Mazrura Sahani; Muhammad Ikram Abdul Wahab; Yusri Yusup; Khairul Nizam Abdul Maulud; Mohd Famey Yusoff; Nowshad Amin; Akhtaruzzaman; Warren B. Kindzierski; Prashant Kumar

Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.


Archive | 2018

Comparison of In situ Observation, NOAA-AIRS Satellite and MACC Model on Surface Ozone Over the Ushuaia, Southern Ocean and Antarctic Peninsula Region

Mohd Shahrul Mohd Nadzir; M. F. Khan; W. Suparta; Siti Khalijah Zainudin

This study aims to determine surface ozone (O3) mixing ratios from in situ observations during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16), by using The Monitoring Atmospheric Composition and Climate (MACC) global model assimilation system developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) and satellite products from the National Oceanic and Atmospheric Administration-Atmospheric Infrared Sounder (NOAA-AIRS) over the Antarctic Peninsula region. We also compared all three types of observation of surface O3 during the period of MASEC’16. The results showed that surface O3 levels from MACC reanalysis and NOAA-AIRS were twice higher than those from in situ observations over Ushuaia, the Drake Passage (Southern Ocean) and the Antarctic Peninsula respectively. Nevertheless, the surface O3 mixing ratios pattern from MACC and NOAA-AIRS were similar to the in situ measurements where mixing ratios of the surface O3 were in the order of Ushuaia < Southern Ocean < Antarctic Peninsula meaning that the NOAA-AIRS satellite and MACC model products are likely to be effective proxies for atmospheric composition over a given region.


Atmospheric Environment | 2015

Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5

Firoz Khan; Mohd Talib Latif; Chee Hou Lim; Norhaniza Amil; Shoffian Amin Jaafar; Doreena Dominick; Mohd Shahrul Mohd Nadzir; Mazrura Sahani; Norhayati Mohd Tahir

Collaboration


Dive into the Mohd Shahrul Mohd Nadzir's collaboration.

Top Co-Authors

Avatar

Mohd Talib Latif

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Firoz Khan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Norhaniza Amil

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mazrura Sahani

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liew Juneng

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doreena Dominick

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge