Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohit Mazumder is active.

Publication


Featured researches published by Mohit Mazumder.


Journal of Bacteriology | 2013

Crystal Structure and Mode of Helicase Binding of the C-Terminal Domain of Primase from Helicobacter pylori

S. A. Abdul Rehman; Vijay Verma; Mohit Mazumder; Suman Kumar Dhar; Samudrala Gourinath

To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.


PLOS Pathogens | 2014

Crystal Structure of Calcium Binding Protein-5 from Entamoeba histolytica and Its Involvement in Initiation of Phagocytosis of Human Erythrocytes

Sanjeev Kumar; Saima Aslam; Mohit Mazumder; Pradeep Dahiya; Aruna Murmu; Babu A. Manjasetty; Rana Zaidi; Alok Bhattacharya; Samudrala Gourinath

Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.


Biochimica et Biophysica Acta | 2013

Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies

Isha Raj; Mohit Mazumder; Samudrala Gourinath

BACKGROUND O-acetyl serine sulfhydrylase (OASS) is a pyridoxal phosphate (PLP) dependent enzyme catalyzing the last step of the cysteine biosynthetic pathway. Here we analyze and investigate the factors responsible for recognition and different conformational changes accompanying the binding of various ligands to OASS. METHODS X ray crystallography was used to determine the structures of OASS from Entamoeba histolytica in complex with methionine (substrate analog), isoleucine (inhibitor) and an inhibitory tetra-peptide to 2.00Å, 2.03Å and 1.87Å resolutions, respectively. Molecular dynamics simulations were used to investigate the reasons responsible for the extent of domain movement and cleft closure of the enzyme in presence of different ligands. RESULTS Here we report for the first time an OASS-methionine structure with an unmutated catalytic lysine at the active site. This is also the first OASS structure with a closed active site lacking external aldimine formation. The OASS-isoleucine structure shows the active site cleft in open state. Molecular dynamics studies indicate that cofactor PLP, N88 and G192 form a triad of energy contributors to close the active site upon ligand binding and orientation of the Schiff base forming nitrogen of the ligand is critical for this interaction. CONCLUSIONS Methionine proves to be a better binder to OASS than isoleucine. The β branching of isoleucine does not allow it to reorient itself in suitable conformation near PLP to cause active site closure. GENERAL SIGNIFICANCE Our findings have important implications in designing better inhibitors against OASS across all pathogenic microbial species.


PLOS ONE | 2012

The GPI Anchor Signal Sequence Dictates the Folding and Functionality of the Als5 Adhesin from Candida albicans

Mohammad Faiz Ahmad; Bhawna Yadav; Pravin Kumar; Amrita Puri; Mohit Mazumder; Anwar Ali; Samudrala Gourinath; Rohini Muthuswami; Sneha Sudha Komath

Background Proteins destined to be Glycosylphosphatidylinositol (GPI) anchored are translocated into the ER lumen completely before the C-terminal GPI anchor attachment signal sequence (SS) is removed by the GPI-transamidase and replaced by a pre-formed GPI anchor precursor. Does the SS have a role in dictating the conformation and function of the protein as well? Methodology/Principal Findings We generated two variants of the Als5 protein without and with the SS in order to address the above question. Using a combination of biochemical and biophysical techniques, we show that in the case of Als5, an adhesin of C. albicans, the C-terminal deletion of 20 amino acids (SS) results in a significant alteration in conformation and function of the mature protein. Conclusions/Significance We propose that the locking of the conformation of the precursor protein in an alternate conformation from that of the mature protein is one probable strategy employed by the cell to control the behaviour and function of proteins intended to be GPI anchored during their transit through the ER.


PLOS Pathogens | 2014

EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

Nitesh Kumar; Somlata; Mohit Mazumder; Priyanka Dutta; Sankar Maiti; Samudrala Gourinath

Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.


PLOS ONE | 2014

Prediction and Analysis of Canonical EF Hand Loop and Qualitative Estimation of Ca2+ Binding Affinity

Mohit Mazumder; Narendra Padhan; Alok Bhattacharya; Samudrala Gourinath

The diversity of functions carried out by EF hand-containing calcium-binding proteins is due to various interactions made by these proteins as well as the range of affinity levels for Ca2+ displayed by them. However, accurate methods are not available for prediction of binding affinities. Here, amino acid patterns of canonical EF hand sequences obtained from available crystal structures were used to develop a classifier that distinguishes Ca2+-binding loops and non Ca2+-binding regions with 100% accuracy. To investigate further, we performed a proteome-wide prediction for E. histolytica, and classified known EF-hand proteins. We compared our results with published methods on the E. histolytica proteome scan, and demonstrated our method to be more specific and accurate for predicting potential canonical Ca2+-binding loops. Furthermore, we annotated canonical EF-hand motifs and classified them based on their Ca2+-binding affinities using support vector machines. Using a novel method generated from position-specific scoring metrics and then tested against three different experimentally derived EF-hand-motif datasets, predictions of Ca2+-binding affinities were between 87 and 90% accurate. Our results show that the tool described here is capable of predicting Ca2+-binding affinity constants of EF-hand proteins. The web server is freely available at http://202.41.10.46/calb/index.html.


PLOS ONE | 2013

Single Residue Mutation in Active Site of Serine Acetyltransferase Isoform 3 from Entamoeba histolytica Assists in Partial Regaining of Feedback Inhibition by Cysteine

Sudhir Kumar; Mohit Mazumder; Sudhaker Dharavath; Samudrala Gourinath

The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.


FEBS Letters | 2016

Crystal Structure of Arabidopsis Thaliana Calmodulin7 and Insight Into its Mode of DNA Binding.

Sanjeev Kumar; Mohit Mazumder; Nisha Gupta; Sudip Chattopadhyay; Samudrala Gourinath

Calmodulin (CaM) is a Ca2+ sensor that participates in several cellular signaling cascades by interacting with various targets, including DNA. It has been shown that Arabidopsis thaliana CaM7 (AtCaM7) interacts with Z‐box DNA and functions as a transcription factor [Kushwaha R et al. (2008) Plant Cell 20, 1747–1759; Abbas N et al. (2014) Plant Cell 26, 1036–1052]. The crystal structure of AtCaM7, and a model of the AtCAM7‐Z‐box complex suggest that Arg‐127 determines the DNA‐binding ability by forming crucial interactions with the guanine base. We validated the model using biolayer interferometry, which confirmed that AtCaM7 interacts with Z‐box DNA with high affinity. In contrast, the AtCaM2/3/5 isoform does not show any binding, although it differs from AtCaM7 by only a single residue.


Scientific Reports | 2016

N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress

Preeti Shahi; Meirav Trebicz-Geffen; Shruti Nagaraja; Rivka Hertz; Sharon Alterzon-Baumel; Karen Methling; Michael Lalk; Mohit Mazumder; Gourinath Samudrala; Serge Ankri

Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite’s survival in its host. In order to obtain insight into the mechanism of E. histolytica’s adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS.


Current Topics in Medicinal Chemistry | 2015

Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase

Mohit Mazumder; Samudrala Gourinath

The cysteine biosynthetic pathway is of fundamental importance for the growth, survival, and pathogenicity of the many pathogens. This pathway is present in many species but is absent in mammals. The ability of pathogens to counteract the oxidative defences of a host is critical for the survival of these pathogens during their long latent phases, especially in anaerobic pathogens such as Entamoeba histolytica, Leishmania donovani, Trichomonas vaginalis, and Salmonella typhimurium. All of these organisms rely on the de novo cysteine biosynthetic pathway to assimilate sulphur and maintain a ready supply of cysteine. The de novo cysteine biosynthetic pathway, on account of its being important for the survival of pathogens and at the same time being absent in mammals, is an important drug target for diseases such as amoebiasis, trichomoniasis & tuberculosis. Cysteine biosynthesis is catalysed by two enzymes: serine acetyl transferase (SAT) followed by O-acetylserine sulfhydrylase (OASS). OASS is well studied, and with the availability of crystal structures of this enzyme in different conformations, it is a suitable template for structure-based inhibitor development. Moreover, OASS is highly conserved, both structurally and sequence-wise, among the above-mentioned organisms. There have been several reports of inhibitor screening and development against this enzyme from different organisms such as Salmonella typhimurium, Mycobacterium tuberculosis and Entamoeba histolytica. All of these inhibitors have been reported to display micromolar to nanomolar binding affinities for the open conformation of the enzyme. In this review, we highlight the structural similarities of this enzyme in different organisms and the attempts for inhibitor development so far. We also propose that the intermediate state of the enzyme may be the ideal target for the design of effective highaffinity inhibitors.

Collaboration


Dive into the Mohit Mazumder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alok Bhattacharya

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Isha Raj

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Rohini Muthuswami

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Kumar

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Sneha Sudha Komath

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Sudhir Kumar

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aruna Murmu

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

B. George

Jawaharlal Nehru University

View shared research outputs
Researchain Logo
Decentralizing Knowledge