Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohiuddin Md. Taimur Khan is active.

Publication


Featured researches published by Mohiuddin Md. Taimur Khan.


Applied and Environmental Microbiology | 2010

Specific and Rapid Enumeration of Viable but Nonculturable and Viable-Culturable Gram-Negative Bacteria by Using Flow Cytometry

Mohiuddin Md. Taimur Khan; Barry H. Pyle; Anne K. Camper

ABSTRACT An issue of critical concern in microbiology is the ability to detect viable but nonculturable (VBNC) and viable-culturable (VC) cells by methods other than existing approaches. Culture methods are selective and underestimate the real population, and other options (direct viable count and the double-staining method using epifluorescence microscopy and inhibitory substance-influenced molecular methods) are also biased and time-consuming. A rapid approach that reduces selectivity, decreases bias from sample storage and incubation, and reduces assay time is needed. Flow cytometry is a sensitive analytical technique that can rapidly monitor physiological states of bacteria. This report outlines a method to optimize staining protocols and the flow cytometer (FCM) instrument settings for the enumeration of VBNC and VC bacterial cells within 70 min. Experiments were performed using the FCM to quantify VBNC and VC Escherichia coli O157:H7, Pseudomonas aeruginosa, Pseudomonas syringae, and Salmonella enterica serovar Typhimurium cells after staining with different fluorescent probes: SYTO 9, SYTO 13, SYTO 17, SYTO 40, and propidium iodide (PI). The FCM data were compared with those for specific standard nutrient agar to enumerate the number of cells in different states. By comparing results from cultures at late log phase, 1 to 64% of cells were nonculturable, 40 to 98% were culturable, and 0.7 to 4.5% had damaged cell membranes and were therefore theoretically dead. Data obtained using four different Gram-negative bacteria exposed to heat and stained with PI also illustrate the usefulness of the approach for the rapid and unbiased detection of dead versus live organisms.


Current Pharmaceutical Design | 2011

Microbial Efflux Pump Inhibition: Tactics and Strategies

George P. Tegos; Mark K. Haynes; J. Jacob Strouse; Mohiuddin Md. Taimur Khan; Cristian G. Bologa; Tudor I. Oprea; Larry A. Sklar

Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the preclinical development of lead EPIs.


Water Research | 2013

Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor.

Mohiuddin Md. Taimur Khan; Satoshi Takizawa; Zbigniew Lewandowski; M. Habibur Rahman; Kazuhiro Komatsu; Sara E. Nelson; Futoshi Kurisu; Anne K. Camper; Hiroyuki Katayama; Shinichiro Ohgaki

The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water.


Environmental Science & Technology | 2011

Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers.

Mohiuddin Md. Taimur Khan; Linnea K. Ista; Gabriel P. Lopez; Andrew J. Schuler

Biofilm-based systems, including integrated fixed-film activated sludge and moving bed bioreactors, are becoming increasingly popular for wastewater treatment, often with the goal of improving nitrification through the enrichment of ammonia and nitrite oxidizing bacteria. We have previously demonstrated the utility of self-assembled monolayers (SAMs) as tools for studying the initial attachment of bacteria to substrata systematically varying in physicochemical properties. In this work, we expanded these studies to bacteria of importance in wastewater treatment systems and we demonstrated attachment rates were better correlated with surface energy than with wettability (water contact angle). Toward the long-term goal of improving wastewater treatment performance through the strategic design of attachment substrata, the attachment rates of two autotrophic ammonia-oxidizing bacteria (Nitrosomonas europaea and Nitrosospira multiformis) and a heterotroph (Escherichia coli) were evaluated using SAMs with a range of wettabilities, surface energies, and functional properties (methyl, hydroxyl, carboxyl, trimethylamine, and amine terminated). Cell attachment rates were somewhat correlated with the water contact angles of the SAMs with polar terminal groups (hydroxyl, carboxyl, trimethylamine, and amine). Including all SAM surfaces, a better correlation was found for all bacteria between attachment rates and surface free energy, as determined using the Lewis Acid-Base approach. The ammonia-oxidizers had higher adhesion rates on the SAMs with higher surface energies than did the heterotroph. This work demonstrated the successful application of SAMs to determine the attachment surface preferences of bacteria important to wastewater treatment, and it provides guidance for a new area of research aimed at improving treatment performance through rational attachment surface design.


Biofouling | 2011

Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces

Mohiuddin Md. Taimur Khan; Philip S. Stewart; David J. Moll; William E. Mickols; Sara E. Nelson; Anne K. Camper

Biofouling is a major reason for flux decline in the performance of membrane-based water and wastewater treatment plants. Initial biochemical characterization of biofilm formation potential and biofouling on two commercially available membrane surfaces from FilmTec Corporation were investigated without filtration in laboratory rotating disc reactor systems. These surfaces were polyamide aromatic thin-film reverse osmosis (RO) (BW30) and semi-aromatic nanofiltration (NF270) membranes. Membrane swatches were fixed on removable coupons and exposed to water with indigenous microorganisms supplemented with 1.5 mg l−1 organic carbon under continuous flow. After biofilms formed, the membrane swatches were removed for analyses. Staining and epifluorescence microscopy revealed more cells on the RO than on the NF surface. Based on image analyses of 5-μm thick cryo-sections, the accumulation of hydrated biofoulants on the RO and NF surfaces exceeded 0.74 and 0.64 μm day−1, respectively. As determined by contact angle the biofoulants increased the hydrophobicity up to 30° for RO and 4° for NF surfaces. The initial difference between virgin RO and NO hydrophobicities was ∼5°, which increased up to 25° after biofoulant formation. The initial roughness of RO and NF virgin surfaces (75.3 nm and 8.2 nm, respectively) increased to 48 nm and 39 nm after fouling. A wide range of changes of the chemical element mass percentages on membrane surfaces was observed with X-ray photoelectron spectroscopy. The initial chemical signature on the NF surface was better restored after cleaning than the RO membrane. All the data suggest that the semi-aromatic NF surface was more biofilm resistant than the aromatic RO surface. The morphology of the biofilm and the location of active and dead cell zones could be related to the membrane surface properties and general biofouling accumulation was associated with changes in the surface chemistry of the membranes, suggesting the validity of the combination of these novel approaches for initial assessment of membrane performance.


Water Research | 2013

Attachment surface energy effects on nitrification and estrogen removal rates by biofilms for improved wastewater treatment

Mohiuddin Md. Taimur Khan; Timothy H. Chapman; Kristin Cochran; Andrew J. Schuler

Submerged biofilm systems, such as integrated fixed-film activated sludge (IFAS) and moving bed bioreactors (MBBRs), are increasingly being used for domestic wastewater treatment, often to improve nitrification. Little is known about whether and how biofilm attachment surface chemical properties affect treatment performance, although surface chemistry is known to affect attachment in other systems, and work with pure strains has suggested that attachment of nitrifying bacteria may be enhanced on high surface energy surfaces. The objective of this research was to systematically evaluate the effects of surface chemistry on biofilm quantity and rates of nitrification and estrogen removal. Biofilms were grown on four plastic attachment surfaces with a range of hydrophobicity and surface energy values (nylon, melamine, high-density-polyethylene [HDPE], and acetal polymeric plastic) by immersing them in a full scale nitrifying activated sludge wastewater treatment system, followed by batch test experiments. The attachment surface water contact angles ranged from 53° to 98° and surface energies ranged from 48.9 to 20.9 mJ/m(2). Attachment surface hydrophilicity and surface energy were positively correlated with total biomass attachment, with more than twice as much biomass on the highest surface energy, most hydrophilic surface (nylon) than on the lowest surface energy, least hydrophilic surface (acetal plastic). Absolute and specific nitrification rates were also correlated with hydrophilicity and surface energy (varying by factors of 5 and 2, respectively), as were absolute and specific removal first order rate constants of the hormones estrone (E1), β-estradiol (E2) and 17α-ethynylestradiol (EE2). These results suggested that attachment surface chemistry may be a useful design parameter for improving biofilm performance for removal of ammonia and endocrine disrupting hormones from wastewater. Further research is required to verify these results at longer time scales and with typical media geometries.


PLOS ONE | 2012

A Novel Flow Cytometric HTS Assay Reveals Functional Modulators of ATP Binding Cassette Transporter ABCB6

Kishore Polireddy; Mohiuddin Md. Taimur Khan; Hemantkumar Chavan; Susan Young; Xiaochao Ma; Anna Waller; Matthew Garcia; Dominique Perez; Stephanie E. Chavez; J. Jacob Strouse; Mark K. Haynes; Cristian G. Bologa; Tudor I. Oprea; George P. Tegos; Larry A. Sklar; Partha Krishnamurthy

ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6’s ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.


Journal of Membrane Science | 2010

Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system

Mohiuddin Md. Taimur Khan; Philip S. Stewart; David J. Moll; William E. Mickols; Mark D. Burr; Sara E. Nelson; Anne K. Camper


Desalination | 2009

Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC.

Mohiuddin Md. Taimur Khan; Zbigniew Lewandowski; Satoshi Takizawa; Kyosuke Yamada; Hiroyuki Katayama; Kazuo Yamamoto; Shinichiro Ohgaki


Journal of Membrane Science | 2011

Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC–MF system

Mohiuddin Md. Taimur Khan; Satoshi Takizawa; Zbigniew Lewandowski; Warren L. Jones; Anne K. Camper; Hiroyuki Katayama; Futoshi Kurisu; Shinichiro Ohgaki

Collaboration


Dive into the Mohiuddin Md. Taimur Khan's collaboration.

Top Co-Authors

Avatar

Anne K. Camper

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinichiro Ohgaki

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Mark K. Haynes

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge