Moira K. B. Whyte
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moira K. B. Whyte.
PLOS ONE | 2010
Marc Daigneault; Julie A. Preston; Helen M. Marriott; Moira K. B. Whyte; David H. Dockrell
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.
Journal of Immunology | 2002
Ian Sabroe; Elizabeth C. Jones; Lynne R. Usher; Moira K. B. Whyte; Steven K. Dower
Leukocyte responsiveness to LPS is dependent upon CD14 and receptors of the Toll-like receptor (TLR) family. Neutrophils respond to LPS, but conflicting data exist regarding LPS responses of eosinophils and basophils, and expression of TLRs at the protein level in these granulocyte lineages has not been fully described. We examined the expression of TLR2, TLR4, and CD14 and found that monocytes expressed relatively high levels of cell surface TLR2, TLR4, and CD14, while neutrophils also expressed all three molecules, but at low levels. In contrast, basophils expressed TLR2 and TLR4 but not CD14, while eosinophils expressed none of these proteins. Tested in a range of functional assays including L-selectin shedding, CD11b up-regulation, IL-8 mRNA generation, and cell survival, neutrophils responded to LPS, but eosinophils and basophils did not. In contrast to previous data, we found, using monocyte depletion by negative magnetic selection, that neutrophil responses to LPS were heavily dependent upon the presence of a very low level of monocytes, and neutrophil survival induced by LPS at 22 h was monocyte dependent. We conclude that LPS has little role in the regulation of peripheral blood eosinophil and basophil function, and that, even in neutrophils, monocytes orchestrate many previously observed leukocyte LPS response patterns.
Journal of Immunology | 2003
Ian Sabroe; Lynne R. Prince; Elizabeth C. Jones; Malcolm J. Horsburgh; Simon J. Foster; Stefanie N. Vogel; Steven K. Dower; Moira K. B. Whyte
Neutrophil responses to commercial LPS, a dual Toll-like receptor (TLR)2 and TLR4 activator, are regulated by TLR expression, but are amplified by contaminating monocytes in routine cell preparations. Therefore, we investigated the individual roles of TLR2 and TLR4 in highly purified, monocyte-depleted neutrophil preparations, using selective ligands (TLR2, Pam3CysSerLys4 and Staphylococcus aureus peptidoglycan; TLR4, purified LPS). Activation of either TLR2 or TLR4 caused changes in adhesion molecule expression, respiratory burst (alone, and synergistically with fMLP), and IL-8 generation, which was, in part, dependent upon p38 mitogen-activated protein kinase signaling. Neutrophils also responded to Pam3CysSerLys4 and purified LPS with down-regulation of the chemokine receptor CXCR2 and, to a lesser extent, down-regulation of CXCR1. TLR4 was the principal regulator of neutrophil survival, and TLR2 signals showed relatively less efficacy in preventing constitutive apoptosis over short time courses. TLR4-mediated neutrophil survival depended upon signaling via NF-κB and mitogen-activated protein kinase cascades. Prolonged neutrophil survival required both TLR4 activation and the presence of monocytes. TLR4 activation of monocytes was associated with the release of neutrophil survival factors, which was not evident with TLR2 activation, and TLR2 activation in monocyte/neutrophil cocultures did not prevent late neutrophil apoptosis. Thus, TLRs are important regulators of neutrophil activation and survival, with distinct and separate roles for TLR2 and TLR4 in neutrophil responses. TLR4 signaling presents itself as a pharmacological target that may allow therapeutic modulation of neutrophil survival by direct and indirect mechanisms at sites of inflammation.
Journal of Immunology | 2003
Ian Sabroe; Robert C. Read; Moira K. B. Whyte; David H. Dockrell; Stefanie N. Vogel; Steven K. Dower
Until recently, the manner in which we respond to pathogens was obscure. It is now clear that a family of proteins, the Toll-like receptors (TLRs),[3][1] contribute to the signal transduction induced by many pathogen-associated molecular patterns (PAMPs), and perhaps also to endogenous damage
Journal of Immunology | 2002
Lynne R. Usher; Roderick Lawson; Ian Geary; Christopher J. Taylor; Colin D. Bingle; Graham W. Taylor; Moira K. B. Whyte
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 μM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.
Journal of Immunology | 2003
David H. Dockrell; Helen M. Marriott; Lynne R. Prince; Victoria Ridger; Paul G. Hellewell; Moira K. B. Whyte
The role of alveolar macrophages (AM) in host defense against pulmonary infection has been difficult to establish using in vivo models. This may reflect a reliance on models of fulminant infection. To establish a unique model of resolving infection, with which to address the function of AM, C57BL/6 mice received low-dose intratracheal administration of pneumococci. Administration of low doses of pneumococci produced a resolving model of pulmonary infection characterized by clearance of bacteria without features of pneumonia. AM depletion in this model significantly increased bacterial outgrowth in the lung. Interestingly, a significant increase in the number of apoptotic AM was noted with the low-dose infection as compared with mock infection. Caspase inhibition in this model decreased AM apoptosis and increased the number of bacteremic mice, indicating a novel role for caspase activation in pulmonary innate defense against pneumococci. These results suggest that AM play a key role in clearance of bacteria from the lung during subclinical infection and that induction of AM apoptosis contributes to the microbiologic host defense against pneumococci.
Journal of Biological Chemistry | 2000
Colin D. Bingle; Ruth W. Craig; Brenka M. Swales; Vanessa Singleton; Ping Zhou; Moira K. B. Whyte
Mcl-1 is a member of the Bcl-2 family that is regulated transcriptionally and post-transcriptionally, with expression of the full-length Mcl-1-encoded gene product resulting in enhanced cell survival. As reported here, the human Mcl-1 gene can also undergo differential splicing, which yields an internally deleted, death-inducing gene product, Mcl-1s/Δ TM. Whereas full-length Mcl-1 derives from three coding exons (instead of the two present in Bcl-2 and other anti-apoptotic members of this family), the Mcl-1s/Δ TM splice variant results from the joining of the first and third exons with skipping of the central exon. Because of the skipped exon and a shift in the reading frame downstream, the Bcl-2 homology domain (BH3) remains intact, whereas the BH1-, BH2-, and transmembrane-encoding domains do not. Mcl-1s/Δ TM thus has features similar to BH3 only, pro-apoptotic Bcl-2 family members and, accordingly, was found to promote cell death. In addition to a variety of other types of regulation, the Mcl-1 gene appears ideally designed for the generation of either a Bcl-2-like viability promoting or, as reported here, a BH3 only death-inducing gene product.
Journal of Leukocyte Biology | 2005
Lisa C. Parker; Moira K. B. Whyte; Steven K. Dower; Ian Sabroe
Neutrophils are amongst the first immune cells to arrive at sites of infection, where they initiate antimicrobial and proinflammatory functions, which serve to contain infection. Sensing and defeating microbial infections are daunting tasks as a result of their molecular heterogeneity; however, Toll‐like receptors (TLRs) have emerged as key components of the innate‐immune system, activating multiple steps in the inflammatory reaction, eliminating invading pathogens, and coordinating systemic defenses. Activated neutrophils limit infection via the phagocytosis of pathogens and by releasing antimicrobial peptides and proinflammatory cytokines and generating reactive oxygen intermediates. Through the production of chemokines, they additionally recruit and activate other immune cells to aid the clearance of the microbes and infected cells and ultimately, mount an adaptive immune response. In acute inflammation, influx of neutrophils from the circulation leads to extremely high cell numbers within tissues, which is exacerbated by their delayed, constitutive apoptosis caused by local inflammatory mediators, potentially including TLR agonists. Neutrophil apoptosis and safe removal by phagocytic cells limit tissue damage caused by release of neutrophil cytotoxic granule contents. This review addresses what is currently known about the function of TLRs in the biology of the human neutrophil, including the regulation of TLR expression, their roles in cellular recruitment and activation, and their ability to delay apoptotic cell death.
Journal of Immunology | 2003
Stephen A. Renshaw; Jasvir S. Parmar; Vanessa Singleton; Sarah J. Rowe; David H. Dockrell; Steven K. Dower; Colin D. Bingle; Edwin R. Chilvers; Moira K. B. Whyte
Neutrophil granulocytes have a short lifespan, with their survival limited by a constitutive program of apoptosis. Acceleration of neutrophil apoptosis following ligation of the Fas death receptor is well-documented and TNF-α also has a transient proapoptotic effect. We have studied the role of the death receptor ligand TRAIL in human neutrophils. We identified the presence of mRNAs for TRAIL, TRAIL-R2, and TRAIL-R3, and cell surface expression of TRAIL-R2 and -R3 in neutrophil populations. Neutrophil apoptosis is specifically accelerated by exposure to a leucine zipper-tagged form of TRAIL, which mimics cell surface TRAIL. Using blocking Abs to TRAIL receptors, specifically TRAIL-R2, and a TRAIL-R1:FcR fusion protein, we have excluded a role for TRAIL in regulating constitutive neutrophil apoptosis. No additional proapoptotic effect of leucine zipper TRAIL was identified following TRAIL treatment of neutrophils in the presence of gliotoxin, an inhibitor of NF-κB, suggesting TRAIL does not activate NF-κB in human neutrophils. TRAIL treatment of human neutrophils did not induce a chemotactic response. The susceptibility of neutrophils to TRAIL-mediated apoptosis suggests a role for TRAIL in the regulation of inflammation and may provide a mechanism for clearance of neutrophils from sites of inflammation.
Journal of Immunology | 2005
Lucy Allen; David H. Dockrell; Theresa Pattery; Daniel G. Lee; Pierre Cornelis; Paul G. Hellewell; Moira K. B. Whyte
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1β) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.