Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moises João Zotti is active.

Publication


Featured researches published by Moises João Zotti.


Frontiers in Physiology | 2016

RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far

Mallikarjuna Reddy Joga; Moises João Zotti; Guy Smagghe; Olivier Christiaens

In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.


Journal of Agricultural and Food Chemistry | 2013

Angiotensin-Converting Enzyme Inhibitory Effects by Plant Phenolic Compounds: A Study of Structure Activity Relationships

Nadin Al Shukor; John Van Camp; Gerard Bryan Gonzales; Dorien Staljanssens; Karin Struijs; Moises João Zotti; Katleen Raes; Guy Smagghe

In this study, 22 phenolic compounds were investigated to inhibit the angiotensin-converting enzyme (ACE). Tannic acid showed the highest activity (IC50 = 230 μM). The IC50 values obtained for phenolic acids and flavonoids ranged between 0.41 and 9.3 mM. QSAR analysis confirmed that the numbers of hydroxyl groups on the benzene ring play an important role for activity of phenolic compounds and that substitution of hydroxyl groups by methoxy groups decreased activity. Docking studies indicated that phenolic acids and flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. Other compounds, such as resveratrol and pyrogallol, may inhibit ACE via interactions with amino acids at the active site, thereby blocking the catalytic activity of ACE. These structure-function relationships are useful for designing new ACE inhibitors and potential blood-pressure-lowering compounds based on phenolic compounds.


Drug Metabolism Reviews | 2015

Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity

Gerard Bryan Gonzales; Guy Smagghe; Charlotte Grootaert; Moises João Zotti; Katleen Raes; John Van Camp

Abstract Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure–activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.


Neotropical Entomology | 2015

RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments

Moises João Zotti; Guy Smagghe

The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.


Insect Science | 2013

Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): Lethal, sublethal and dose–response effects

Moises João Zotti; Anderson Dionel Grutzmacher; Isac Heres Lopes; Guy Smagghe

The comprehensive knowledge that the delayed systemic and reproduction side effects can be even more deleterious than acute toxicity, has caused a shift in focus toward sublethal effects assessment on physiology and behavior of beneficial insects. In this study, we assessed the risks posed by some insecticides with different mode of action through lethal and delayed systemic sublethal effects on the pupation, adult emergence, and reproduction of the chrysopid Chrysoperla externa (Hagen, 1861; Neuroptera: Chrysopidae), an important predator in pest biological control. The maximum field recommended dose (MFRD) and twice (2×MFRD) for chlorantraniliprole, tebufenozide, and pyriproxyfen were harmless to C. externa. In contrast, all the tested chitin synthesis inhibitors (CSIs) were highly detrimental to the predator, despite of their lack of acute lethal toxicity. Therefore, the safety assumed by using IGRs toward beneficial insects is not valid for chrysopids. Dose–response data showed that although all CSIs have a similar mechanism of action, the relative extent of toxicity may differ (novaluron > lufenuron > teflubenzuron). For CSIs, the delayed systemic effects became obvious at adult emergence, where the predicted no observable effect dose (NOED) was 1/2 048 of the MFRD for novaluron (0.085 ng/insect), and 1/256 of the MFRD for both lufenuron (0.25 ng/insect) and teflubenzuron (0.6 ng/insect). Finally, this work emphasized the significance of performing toxicity risk assessments with an adequate posttreatment period to avoid underestimating the toxicities of insecticides, as the acute lethal toxicity assays may not provide accurate information regarding the long‐range effects of hazardous compounds.


Peptides | 2013

Analogs of sulfakinin-related peptides demonstrate reduction in food intake in the red flour beetle, Tribolium castaneum, while putative antagonists increase consumption.

Na Yu; Veronica Benzi; Moises João Zotti; Dorien Staljanssens; Krzysztof Kaczmarek; Janusz Zabrocki; Ronald J. Nachman; Guy Smagghe

The insect sulfakinins (SKs) constitute a family of neuropeptides that display both structural and functional similarities to the mammalian hormones gastrin and cholecystokinin (CCK). As a multifunctional neuropeptide, SKs are involved in muscle contractions as well as food intake regulation in many insects. In the red flour beetle Tribolium castaneum, the action on food intake by a series of synthetic SK analogs and one putative antagonist was investigated by injection in beetle adults. The most remarkable result was that both sulfated and non-sulfated SKs [FDDY(SO3H)GHMRFamide] inhibited food intake by about 70%. Strong activity observed for SK analogs featuring a residue that mimics the acidic nature of Tyr(SO3H) but lack the phenyl ring of Tyr, indicate that aromaticity is not a critical characteristic for this position of the peptide. SK demonstrated considerable tolerance to Ser and Ala substitution in position 8 (basic Arg), as analogs featuring these uncharged substitutions retained almost all of the food intake inhibitory activity. Also, the Phe in position 1 could be replaced by Ser without complete loss of activity. Conversely, substitution of Met by Nle in position 7 led to inactive compounds. Finally, the Caenorhabditis elegans sulfated neuropeptide-like protein-12 (NLP-12), that shares some sequence similarities with the SKs but features a Gln-Phe-amide rather than an Arg-Phe-amide at the C-terminus, elicited increased food intake in T. castaneum, which may indicate an antagonist activity. Co-injection of NLP-12 with nsSK blocked the food intake inhibitory effects of nsSK.


Pest Management Science | 2018

RNA interference technology in crop protection against arthropod pests, pathogens and nematodes

Moises João Zotti; Ericmar Avila dos Santos; Deise Cagliari; Olivier Christiaens; Clauvis Nji Tizi Taning; Guy Smagghe

Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations.


Pesticide Biochemistry and Physiology | 2013

A cell-based reporter assay for screening for EcR agonist/antagonist activity of natural ecdysteroids in Lepidoptera (Bm5) and Diptera (S2) cell cultures, followed by modeling of ecdysteroid-EcR interactions and normal mode analysis.

Moises João Zotti; Ellen De Geyter; Luc Swevers; Antônio Sk Braz; Luis Pb Scott; Pierre Rougé; J. Coll; Anderson Dionei Grützmacher; Eder J Lenardão; Guy Smagghe

Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50=3.3μM) and Bm5 cells (EC50=5.3μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50=0.71μM and 0.00089μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50=18μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.


Pest Management Science | 2013

A new dibenzoylhydrazine with insecticidal activity against Anopheles mosquito larvae

Evangelia Morou; Manolis Lirakis; Nena Pavlidi; Moises João Zotti; Yoshiaki Nakagawa; Guy Smagghe; John Vontas; Luc Swevers

BACKGROUND Dibenzoylhydrazine (DBH) compounds have been applied successfully as environmentally safe insecticides against lepidopteran larvae and ground-dwelling coleopterans, but their potential to combat mosquito larvae is largely unknown. Here, toxicity tests of three commercial DBHs (tebufenozide, methoxyfenozide and halofenozide) and one experimental DBH (KU-106) against larvae of Anopheles gambiae, the major vector for human malaria, are reported. RESULTS Based on calculated median larvicidal concentration (LC50 ) values at 5 days of treatment, KU-106 (760 nM) showed an activity against Anopheles larvae similar to that of commercial halofenozide. Induction of the early-late gene hr3 and docking studies of DBHs in the ligand-binding pocket of the modelled Anopheles ecdysone receptor indicated that toxicity is caused by the activation of the ecdysone regulatory cascade causing a premature lethal moult. CONCLUSIONS As a result of the similar toxicity exhibited by the experimental compound KU-106 to that shown by commercial products, the present study demonstrated that the use of DBH compounds to combat harmful dipteran insects, such as mosquitoes, remains unexplored and invites further systematic toxicity tests using other derivatives of the DBH class of compounds.


Ecotoxicology | 2012

Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects

Moises João Zotti; Olivier Christiaens; Pierre Rougé; Anderson Dionei Grützmacher; Paulo Zimmer; Guy Smagghe

In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.

Collaboration


Dive into the Moises João Zotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Rossato Busato

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Mauro Silveira Garcia

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Pinheiro Giolo

Universidade Federal de Pelotas

View shared research outputs
Researchain Logo
Decentralizing Knowledge