Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moitrayee Bhattacharyya is active.

Publication


Featured researches published by Moitrayee Bhattacharyya.


Journal of Biological Chemistry | 2013

Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism

Subhalaxmi Nambi; Kallol Gupta; Moitrayee Bhattacharyya; Parvathy Ramakrishnan; Vaishnavi Ravikumar; Nida Siddiqui; Ann Terene Thomas; Sandhya S. Visweswariah

Background: KATmt is the first identified cAMP-regulated protein lysine acetylase in mycobacteria. Results: KATmt acylates fatty acyl CoA ligases in vivo in a cAMP-dependent manner, thus regulating their activity. Conclusion: Mycobacteria utilize KATmt to regulate the metabolic pool of acetyl and propionyl CoA. Significance: We provide novel paradigms for linking cAMP signaling and fatty acid metabolism in mycobacteria. Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guérin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.


Biochemistry | 2011

Probing the allosteric mechanism in pyrrolysyl-tRNA synthetase using energy-weighted network formalism

Moitrayee Bhattacharyya; Saraswathi Vishveshwara

Pyrrolysyl-tRNA synthetase (PylRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PylRS (DhPylRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery and half-sites reactivity in the case of DhPylRS) lies in subtle rearrangements of interactions and dynamics at a global level.


Proteins | 2010

Allostery and conformational free energy changes in human tryptophanyl‐tRNA synthetase from essential dynamics and structure networks

Moitrayee Bhattacharyya; Amit Ghosh; Priti Hansia; Saraswathi Vishveshwara

The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of allostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side‐chains and then to compute the ligand‐induced population shift. Finally, we obtain the free‐energy landscape of the protein in equilibrium, characterizing the free‐energy minima accessed by the protein complexes. We have chosen human tryptophanyl‐tRNA synthetase (hTrpRS), a protein responsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure. Proteins 2010.


Protein Science | 2013

An automated approach to network features of protein structure ensembles

Moitrayee Bhattacharyya; Chanda R Bhat; Saraswathi Vishveshwara

Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone‐efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user‐friendly, standalone program package named PSN‐Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X‐ray structures. The novelty in network construction lies in the explicit consideration of side‐chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long‐range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross‐correlation/interaction energy in PSN‐Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN‐Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin‐conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN‐Ensemble for single‐static structures of active/inactive states of β2‐adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN‐Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN‐Ensemble/psn_index.html.


Current Protein & Peptide Science | 2015

Protein Structure and Function: Looking through the Network of Side-Chain Interactions

Moitrayee Bhattacharyya; Soma Ghosh; Saraswathi Vishveshwara

Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.


Molecular BioSystems | 2013

Rapid mass spectrometric determination of disulfide connectivity in peptides and proteins

Moitrayee Bhattacharyya; Kallol Gupta; Konkallu Hanumae Gowd; Padmanabhan Balaram

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.


BMC Structural Biology | 2010

Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis.

Moitrayee Bhattacharyya; Saraswathi Vishveshwara

BackgroundOne of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function.ResultsIn this study, we have explored the ligand induced conformational changes in H.pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H.pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co-operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites.ConclusionsIn this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.


Acta Crystallographica Section D-biological Crystallography | 2011

Network approach for capturing ligand-induced subtle global changes in protein structures

Anshul Sukhwal; Moitrayee Bhattacharyya; Saraswathi Vishveshwara

Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.


Nucleic Acids Research | 2013

Distinctive contributions of the ribosomal P-site elements m2G966, m5C967 and the C-terminal tail of the S9 protein in the fidelity of initiation of translation in Escherichia coli

Smriti Arora; Satya Prathyusha Bhamidimarri; Moitrayee Bhattacharyya; Ashwin Govindan; Michael H. W. Weber; Saraswathi Vishveshwara; Umesh Varshney

The accuracy of pairing of the anticodon of the initiator tRNA (tRNAfMet) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m2G966 (methylated by RsmD), m5C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNAfMet. We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA (tRNAfMet with CAU anticodon); CAC and CAU with tRNA; UAG with tRNA; UAC with tRNA; and AUC with tRNA using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.


PLOS ONE | 2012

Interaction signatures stabilizing the NAD(P)-binding Rossmann fold: a structure network approach.

Moitrayee Bhattacharyya; Roopali Upadhyay; Saraswathi Vishveshwara

The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a “spatial motif” and several “fold specific hot spots” that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.

Collaboration


Dive into the Moitrayee Bhattacharyya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanda R Bhat

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Kallol Gupta

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anshul Sukhwal

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ashwin Govindan

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge