Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mojca Frank-Bertoncelj is active.

Publication


Featured researches published by Mojca Frank-Bertoncelj.


Nature Communications | 2017

Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions

Mojca Frank-Bertoncelj; Michelle Trenkmann; Kerstin Klein; Emmanuel Karouzakis; Hubert Rehrauer; Anna Bratus; Christoph Kolling; Maria Armaka; Andrew Filer; Beat A. Michel; Christopher D. Buckley; George Kollias; Caroline Ospelt

A number of human diseases, such as arthritis and atherosclerosis, include characteristic pathology in specific anatomical locations. Here we show transcriptomic differences in synovial fibroblasts from different joint locations and that HOX gene signatures reflect the joint-specific origins of mouse and human synovial fibroblasts and synovial tissues. Alongside DNA methylation and histone modifications, bromodomain and extra-terminal reader proteins regulate joint-specific HOX gene expression. Anatomical transcriptional diversity translates into joint-specific synovial fibroblast phenotypes with distinct adhesive, proliferative, chemotactic and matrix-degrading characteristics and differential responsiveness to TNF, creating a unique microenvironment in each joint. These findings indicate that local stroma might control positional disease patterns not only in arthritis but in any disease with a prominent stromal component.


Journal of Molecular Medicine | 2016

Regulation and function of SIRT1 in rheumatoid arthritis synovial fibroblasts

Anna Engler; Clare Tange; Mojca Frank-Bertoncelj; Caroline Ospelt

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and destruction of synovial joints. The function of sirtuin (SIRT)1 in RA is inconclusive. In human synovial cells, SIRT1 was shown to promote cytokine production and apoptosis resistance. However, deletion of SIRT1 aggravated inflammatory arthritis in mice and increased production of pro-inflammatory cytokines in murine macrophages. In the current study, we investigated the regulation, expression, and function of SIRT1 in RA, in particular its role in adhesion and proliferation of human RA synovial fibroblasts (RASF). We found that expression of SIRT1 was increased in vivo in synovial tissues of RA smokers and in vitro by stimulation of RASF with TNFα, but decreased upon treatment with cigarette smoke extract. Synovial tissues of RA smokers showed higher leukocytic infiltration that positively correlated with enhanced levels of SIRT1. Global transcriptome analysis revealed that SIRT1 modulates expression of genes involved in the regulation of inflammatory response and cell adhesion. In functional studies, silencing of SIRT1 reduced proliferation and leukocytic adhesion to RASF but showed inconsistent results in the regulation of adhesion to plastic. In conclusion, SIRT1 modulates the proliferative and potentially also adhesive properties of RASF and can therefore promote progression of RA.Key messagesSIRT1 is upregulated by TNFα but decreased upon CSE treatment of RASF.Upregulation of SIRT1 in RA smokers correlates with increased leukocytic infiltration.SIRT1 modulates expression of genes regulating cell adhesion and inflammation.SIRT1 regulates proliferation of RASF.


Arthritis Research & Therapy | 2014

The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis

Mojca Frank-Bertoncelj

Perturbed epigenetic landscape and deregulated microRNA networks are central to the permanent activation and aggressiveness of synovial fibroblasts in rheumatoid arthritis. Current anti-cytokine therapies, although effectively halting synovitis, cannot reverse the stably activated destructive phenotype of rheumatoid arthritis synovial fibroblasts, offering rather limited protection against ongoing joint destruction in rheumatoid arthritis. Targeting the deregulated epigenome of rheumatoid arthritis synovial fibroblasts is key to developing joint-protective strategies in rheumatoid arthritis. To date, different pathogenic mechanisms have been identified that can profoundly impact the epigenetic derangements in rheumatoid arthritis synovial fibroblasts, including increased consumption of S-adenosylmethionine, a principal methyl donor in DNA methylation reactions, together with deregulation of crucial DNA- and histone-modifying enzymes. Re-establishing globally disturbed DNA methylation patterns in rheumatoid arthritis synovial fibroblasts by supplementing S-adenosylmethionine while preventing its leakage into polyamine cycles may be a promising therapeutic strategy in rheumatoid arthritis and the first epigenetic treatment to target rheumatoid arthritis synovial fibroblasts at the scene of the crime. Given the dynamic nature and reversibility of epigenetic modifications, their involvement in human diseases and recent perspectives on epigenetic therapies in cancer, epigenetic targeting of rheumatoid arthritis synovial fibroblasts should be within future reach.


Arthritis & Rheumatism | 2017

Genomic Responses of Mouse Synovial Fibroblasts During Tumor Necrosis Factor-Driven Arthritogenesis Greatly Mimic Those in Human Rheumatoid Arthritis.

Evangelos Ntougkos; Panagiotis Chouvardas; Fani Roumelioti; Caroline Ospelt; Mojca Frank-Bertoncelj; Andrew Filer; Christopher D. Buckley; Christoforos Nikolaou; George Kollias

Aberrant activation of synovial fibroblasts is a key determinant in the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to produce a map of gene expression and epigenetic changes occurring in this cell type during disease progression in the human tumor necrosis factor (TNF)–transgenic model of arthritis and to identify commonalities with human synovial fibroblasts.


The Journal of Rheumatology | 2015

Genetic Factors for the Severity of ACPA-negative Rheumatoid Arthritis in 2 Cohorts of Early Disease: A Genome-wide Study.

Diederik P. C. de Rooy; Roula Tsonaka; Maria L. E. Andersson; Kristina Forslind; Alexandra Zhernakova; Mojca Frank-Bertoncelj; Caroline G. F. de Kovel; Bobby P. C. Koeleman; Désirée van der Heijde; Tom W J Huizinga; René E. M. Toes; Jeanine J. Houwing-Duistermaat; Caroline Ospelt; Björn Svensson; Annette H. M. van der Helm-van Mil

Objective. Rheumatoid arthritis (RA) that is negative for anticitrullinated protein antibodies (ACPA) is a subentity of RA, characterized by less severe disease. At the individual level, however, considerable differences in the severity of joint destruction occur. We performed a study on genetic factors underlying the differences in joint destruction in ACPA-negative patients. Methods. A genome-wide association study was done with 262 ACPA-negative patients with early RA included in the Leiden Early Arthritis Clinic and related to radiographic joint destruction over 7 years. Significant single-nucleotide polymorphisms (SNP) were evaluated for association with progression of radiographic joint destruction in 253 ACPA-negative patients with early RA included in the Better Anti-Rheumatic Farmaco Therapy (BARFOT) study. According to the Bonferroni correction of the number of tested SNP, the threshold for significance was p < 2 × 10−7 in phase 1 and 0.0045 in phase 2. In both cohorts, joint destruction was measured by Sharp/van der Heijde method with good reproducibility. Results. Thirty-three SNP associated with severity of joint destruction (p < 2 × 10−7) in phase 1. In phase 2, rs2833522 (p = 0.0049) showed borderline significance. A combined analysis of both the Leiden and BARFOT datasets of rs2833522 confirmed this association with joint destruction (p = 3.57 × 10−9); the minor allele (A) associated with more severe damage (for instance, after 7 yrs followup, patients carrying AA had 1.22 times more joint damage compared to patients carrying AG and 1.50 times more joint damage than patients carrying GG). In silico analysis using the ENCODE and Ensembl databases showed presence of H3K4me3 histone mark, transcription factors, and long noncoding RNA in the region of rs2833522, an intergenic SNP located between HUNK and SCAF4. Conclusion. Rs2833522 might be associated with the severity of joint destruction in ACPA-negative RA.


Epigenomics | 2017

Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis

Mojca Frank-Bertoncelj; Kerstin Klein

Genetic and environmental factors contribute to the risk for rheumatoid arthritis (RA), with epigenetics serving as a possible interface through which risk factors contribute to RA. High-throughput technologies for interrogating genome and epigenome, and the availability of genetic and epigenetic datasets across a diversity of cell types, enable the identification of candidate causal genetic variants for RA to study their function in core RA processes. To date, RA risk variants were studied in the immune cells but not joint resident cells, for example, synovial fibroblasts. Synovial fibroblasts from different joints are distinct, anatomically specialized cells, defined by joint-specific transcriptomes, epigenomes and phenotypes. Cell type-specific analysis of epigenetic changes, together with genetic fine mapping and interrogation of chromatin 3D interactions may identify new disease relevant pathways, potential therapeutic targets and biomarkers for RA progression or therapy response.


Nature Reviews Rheumatology | 2017

Why location matters [mdash] site-specific factors in rheumatic diseases

Caroline Ospelt; Mojca Frank-Bertoncelj

Rheumatic diseases follow a characteristic anatomical pattern of joint and organ involvement. This Review explores three interconnected mechanisms that might be involved in the predilection of specific joints for developing specific forms of arthritis: site-specific local cell types that drive disease; systemic triggers that affect local cell types; and site-specific exogenous factors, such as focal mechanical stress, that activate cells locally. The embryonic development of limbs and joints is also relevant to the propensity of certain joints to develop arthritis. Additionally, location-specific homeostasis and disease occurs in skin and blood vessels, thereby extending the concept of site-specificity in human diseases beyond rheumatology. Acknowledging the importance of site-specific parameters increases the complexity of current disease paradigms and brings us closer to understanding why particular disease processes manifest at a particular location.


Journal of Autoimmunity | 2017

The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance

Kerstin Klein; Mojca Frank-Bertoncelj; Emmanuel Karouzakis; Christoph Kolling; Adrian Ciurea; Nagihan Bostanci; Georgios N. Belibasakis; Lih-Ling Lin; Oliver Distler; Caroline Ospelt

Synovial fibroblasts (SF) drive inflammation and joint destruction in chronic arthritis. Here we show that SF possess a distinct type of LPS tolerance compared to macrophages and other types of fibroblasts. In SF and dermal fibroblasts, genes that were non-tolerizable after repeated LPS stimulation included pro-inflammatory cytokines, chemokines and matrix metalloproteinases, whereas anti-viral genes were tolerizable. In macrophages, all measured genes were tolerizable, whereas in gingival and foreskin fibroblasts these genes were non-tolerizable. Repeated stimulation of SF with LPS resulted in loss of activating histone marks only in promoters of tolerizable genes. The epigenetic landscape at promoters of tolerizable genes was similar in unstimulated SF and monocytes, whereas the basal configuration of histone marks profoundly differed in genes that were non-tolerizable in SF only. Our data suggest that the epigenetic configuration at gene promoters regulates cell-specific LPS-induced responses and primes SF to sustain their inflammatory response in chronic arthritis.


PLOS ONE | 2016

Expression and Regulation of PIWIL-Proteins and PIWI-Interacting RNAs in Rheumatoid Arthritis

Lenka Pleštilová; Giancarlo Russo; Mojca Frank-Bertoncelj; Caroline Ospelt; Adrian Ciurea; Christoph Kolling; Beat A. Michel; Jiří Vencovský; Astrid Jüngel

Objective The PIWIL (P-element induced wimpy testis like protein) subfamily of argonaute proteins is essential for Piwi-interacting RNA (piRNA) biogenesis and their function to silence transposons during germ-line development. Here we explored their presence and regulation in rheumatoid arthritis (RA). Methods The expression of PIWIL genes in RA and osteoarthritis (OA) synovial tissues and synovial fibroblasts (SF) was analysed by Real-time PCR, immunofluorescence and Western blot. The expression of piRNAs was quantified by next generation small RNA sequencing (NGS). The regulation of PIWI/piRNAs, proliferation and methylation of LINE-1 after silencing of PIWIL genes were studied. Results PIWIL2 and 4 mRNA were similarly expressed in synovial tissues and SF from RA and OA patients. However, on the protein level only PIWIL4 was strongly expressed in SF. Using NGS up to 300 piRNAs were identified in all SF without significant differences in expression levels between RA and OASF. Of interest, the analysis of the co-expression of the detected piRNAs revealed a less tightly regulated pattern of piRNA-823, -4153 and -16659 expression in RASF. In RASF and OASF, stimulation with TNFα+IL1β/TLR-ligands further significantly increased the expression levels of PIWIL2 and 4 mRNA and piRNA-16659 was significantly (4-fold) induced upon Poly(I:C) stimulation. Silencing of PIWIL2/4 neither affect LINE-1 methylation/expression nor proliferation of RASF. Conclusion We detected a new class of small regulatory RNAs (piRNAs) and their specific binding partners (PIWIL2/4) in synovial fibroblasts. The differential regulation of co-expression of piRNAs in RASF and the induction of piRNA/Piwi-proteins by innate immune stimulators suggest a role in inflammatory processes.


RMD Open | 2016

MicroRNAs interfere with DNA methylation in rheumatoid arthritis synovial fibroblasts

Niharika Gaur; Emmanuel Karouzakis; Selene Glück; Edvardas Bagdonas; Astrid Jüngel; Beat A. Michel; Mojca Frank-Bertoncelj

Background The DNA of rheumatoid arthritis synovial fibroblasts (RASF) is globally hypomethylated; this contributes to an aggressive behaviour. In an attempt to remethylate these cells, we supplemented with methyl donors. We investigated the possible interference of microRNAs (miRs). Material and methods RASF were treated with L-methionine or betaine. Transcripts of de novo methyltransferases (DNMTs) and miRs were measured by real-time PCR, and a transcription PCR array was performed. Levels of homocysteine, matrix metalloproteinase-1 (MMP-1) and global DNA methylation were determined. Transfection with lipofectamine was performed with specific pre-miRs and anti-miRs, such as miR29 and let7f. Results L-methionine was more efficient to increase DNA methylation than betaine. This was associated with a reduced expression of DNMT3A mRNA in betaine-treated RASF. Betaine increases the expression of miR29 in RASF which targets DNMT3A, thereby limiting the remethylation process. Nevertheless, betaine inhibited the expression of multiple transcription factors, decreased the release of MMP-1, biosynthesis of homocysteine and cell migration. Conclusion Alterations in cellular miRs profiles, in particular the upregulation of miR29, which targets DNMT3A, may limit the efficiency of betaine if it is used as DNA remethylating agent. However, L-methionine also has similar impact on miR29 expression. On the other hand, betaine has multiple other beneficial effects on the activated phenotype of RASF; it is not excluded that the effect of betaine on DNMT3A is, at least in part, indirect. Clinical trials with betaine could be promising.

Collaboration


Dive into the Mojca Frank-Bertoncelj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Filer

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge