Mojca Šraj
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mojca Šraj.
Science | 2017
Günter Blöschl; Julia Hall; Juraj Parajka; Rui A. P. Perdigão; Bruno Merz; Berit Arheimer; Giuseppe T. Aronica; Ardian Bilibashi; Ognjen Bonacci; Marco Borga; Ivan Čanjevac; Attilio Castellarin; Giovanni Battista Chirico; Pierluigi Claps; Károly Fiala; N. A. Frolova; Liudmyla Gorbachova; Ali Gül; Jamie Hannaford; Shaun Harrigan; M. B. Kireeva; Andrea Kiss; Thomas R. Kjeldsen; Silvia Kohnová; Jarkko Koskela; Ondrej Ledvinka; Neil Macdonald; Maria Mavrova-Guirguinova; Luis Mediero; Ralf Merz
Flooding along the river Will a warming climate affect river floods? The prevailing sentiment is yes, but a consistent signal in flood magnitudes has not been found. Blöschl et al. analyzed the timing of river floods in Europe over the past 50 years and found clear patterns of changes in flood timing that can be ascribed to climate effects (see the Perspective by Slater and Wilby). These variations include earlier spring snowmelt floods in northeastern Europe, later winter floods around the North Sea and parts of the Mediterranean coast owing to delayed winter storms, and earlier winter floods in western Europe caused by earlier soil moisture maxima. Science, this issue p. 588 see also p. 552 Climate change is affecting the timing of river flooding across Europe. A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014
Nejc Bezak; Mitja Brilly; Mojca Šraj
Abstract Flood frequency analysis can be made by using two types of flood peak series, i.e. the annual maximum (AM) and peaks-over-threshold (POT) series. This study presents a comparison of the results of both methods for data from the Litija 1 gauging station on the Sava River in Slovenia. Six commonly used distribution functions and three different parameter estimation techniques were considered in the AM analyses. The results showed a better performance for the method of L-moments (ML) when compared with the conventional moments and maximum likelihood estimation. The combination of the ML and the log-Pearson type 3 distribution gave the best results of all the considered AM cases. The POT method gave better results than the AM method. The binomial distribution did not offer any noticeable improvement over the Poisson distribution for modelling the annual number of exceedences above the threshold. Editor D. Koutsoyiannis Citation Bezak, N., Brilly, M., and Šraj, M., 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59 (5), 959–977.
Journal of Hydrology and Hydromechanics | 2016
Mojca Šraj; Alberto Viglione; Juraj Parajka; Günter Blöschl
Abstract Substantial evidence shows that the frequency of hydrological extremes has been changing and is likely to continue to change in the near future. Non-stationary models for flood frequency analyses are one method of accounting for these changes in estimating design values. The objective of the present study is to compare four models in terms of goodness of fit, their uncertainties, the parameter estimation methods and the implications for estimating flood quantiles. Stationary and non-stationary models using the GEV distribution were considered, with parameters dependent on time and on annual precipitation. Furthermore, in order to study the influence of the parameter estimation approach on the results, the maximum likelihood (MLE) and Bayesian Monte Carlo Markov chain (MCMC) methods were compared. The methods were tested for two gauging stations in Slovenia that exhibit significantly increasing trends in annual maximum (AM) discharge series. The comparison of the models suggests that the stationary model tends to underestimate flood quantiles relative to the non-stationary models in recent years. The model with annual precipitation as a covariate exhibits the best goodness-of-fit performance. For a 10% increase in annual precipitation, the 10-year flood increases by 8%. Use of the model for design purposes requires scenarios of future annual precipitation. It is argued that these may be obtained more reliably than scenarios of extreme event precipitation which makes the proposed model more practically useful than alternative models.
Journal of Hydrology and Hydromechanics | 2010
Mojca Šraj; Luka Dirnbek; Mitja Brilly
The influence of effective rainfall on modeled runoff hydrograph Influence of the pattern of effective rainfall on modeled hydrograph was investigated in the study. The modelling was performed with the U.S. Army Corps of Engineers hydrograph package HEC-HMS 3.2 and calibrated and validated on measured hydrographs of Glinscica watershed. Six different models of rainfall loss were applied and their effect on modeled hydrograph was evaluated. Peak discharge, time of peak discharge and runoff volume were compared. The best results with the lowest RMSE in the study was obtained with the SCS curve number loss method. Also synthetic hyetographs of different probability and duration were used. Three positions of the maximum rainfall intensity at 25, 50 and 75 % of the rainfall duration were applied. The results showed essential differences in simulated time to peak and also differences in peak discharge. The differences in time to peak increases considerably with the increasing of the rainfall duration. Finally, the results of constant intensity distribution of rainfall of different durations were compared with those obtained with typical rainfall distribution with the position of the maximum intensity at 50 %. Results showed considerable differences in peak discharge and time to peak by longer durations of the rainfall. Vplyv efektívnych zrážok na modelovaný hydrograf odtoku Práca obsahuje výsledky výskumu vplyvu efektívnych zrážok na modelovaný hydrograf. Odtok bol modelovaný pomocou nástroja U.S. Army Corps of Engineers hydrograph package HEC-HMS 3.2, potom kalibrovaný a verifikovaný na meraných hydrografoch povodia Glinscica. Vplyv zrážok na modelovaný hydrograf bol vypočítaný pre šesť rôznych modelov priebehu zrážok. Porovnali sme maximálne prietoky, časy ich trvania a odtečené množstvá. Najlepšie výsledky s najnižším RMSE sme získali s SCS modelom odtoku. Použili sme tiež syntetické hyetografy rozdielnej pravdepodobnosti a trvania. Použili sa tri polohy maximálnych intenzít zrážok; pre 25, 50 a 75 % ich trvania. Výsledky ukázali zásadný rozdiel v simulovaných časoch maximálneho prietoku a tiež rozdiely v maximálnych prietokoch. Rozdiely v časoch dosiahnutia maximálnych odtokov sa výrazne zvyšovali s časom trvania zrážky. Nakoniec sme porovnali výsledky výpočtov s konštantnými intenzitami rozdelenia s rôznym trvaním zrážky s tými, ktoré boli vypočítané s použitím typických rozdelení, s polohou maximálnej intenzity zrážok pri 50 % ich trvania. Výsledky ukazujú významné rozdiely v maximálnych prietokoch a v časoch ich dosiahnutia v závislosti od trvania zrážky.
Archive | 2009
Luka Stravs; Mitja Brilly; Mojca Šraj
The machine learning methods M5 for generating regression and model tree models and J4.8 for generating classification tree models were selected as the methods for analysis of the results of experimental measurements in the Dragonja River basin. Many interesting and useful details about the process of precipitation interception by the forest in the Dragonja River basin were found. The resulting classification and regression tree models clearly show the degree of influence and interactions between different climatic factors, which importantly influence the process of precipitation interception.
IOP Conference Series: Earth and Environmental Science | 2008
Mojca Šraj; Simon Rusjan; Sašo Petan; Andrej Vidmar; Matjaž Mikoš; Lidija Globevnik; Mitja Brilly
Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016
Nejc Bezak; Mojca Šraj; Matjaž Mikoš
ABSTRACT Suspended solids are present in every river, but high quantities can worsen the ecological conditions of streams; therefore, effective monitoring and analysis of this hydrological variable are necessary. Frequency, seasonality, inter-correlation, extreme events, trends and lag analyses were carried out for peaks of suspended sediment concentration (SSC) and discharge (Q) data from Slovenian streams using officially monitored data from 1955 to 2006 that were made available by the Slovenian Environment Agency. In total more than 500 station-years of daily Q and SSC data were used. No uniform (positive or negative) trend was found in the SSC series; however, all the statistically significant trends were decreasing. No generalization is possible for the best fit distribution function. A seasonality analysis showed that most of the SSC peaks occurred in the summer (short-term intense convective precipitation produced by thunderstorms) and in the autumn (prolonged frontal precipitation). Correlations between Q and SSC values were generally relatively small (Pearson correlation coefficient values from 0.05 to 0.59), which means that the often applied Q–SSC curves should be used with caution when estimating annual suspended sediment loads. On average, flood peak Q occurred after the corresponding SSC peak (clockwise-positive hysteresis loops), but the average lag time was rather small (less than 1 day). Editor M.C. Acreman; Associate editor Y. Gyasi-Agyei
Physical Geography | 2016
Mojca Šraj; Matevž Menih; Nejc Bezak
Abstract Assessment of climate change or climate variability is a significant topic in most geophysical disciplines. In this study, the flood frequency approach was selected to analyze changes in flood series. Discharge data from 55 gaging stations in Slovenia were used. The annual maximum method was applied to define the samples. The data sets were divided into 30-year periods based on a 10-year moving window. For each part of the data-set, the flood frequency analysis was performed. Changes in the estimated design discharge values with a 10-year return period, which is commonly used in engineering design, were observed for the two selected 30-year periods, namely 1961–1990 and 1981–2010, and the results were compared with the Mann–Kendall (MK) test. The results indicate that no uniform pattern can be found in the differences between estimated design discharge values for the two selected periods. The same applies to the MK trend test results, which were positive and statistically significant with the chosen significance level of 0.05 only for approximately 5% of stations. However, our comparison of the results of the flood frequency analyses among different 30-year periods showed considerable changes in the design discharge for some stations.
Archive | 2015
Mitja Brilly; Mojca Šraj; Andrej Vidmar; Miha Primožič; Maja Koprivšek
In the past few years, the topic of climate change impact on the water regime of the Sava River basin has been presented in several studies. Average seasonal precipitation and temperature data were calculated and presented, but results are not useful for climate change impacts on floods. The maximum daily precipitation data for each season and temperature data from the meteorological report are taken for the hydrological analysis. Maximum daily precipitations were provided with twenty-year and hundred-year return periods. The hydrological analysis was derived using a hydrological model calibrated for the flood event in 1974 before large flood protection scheme was developed along the Sava River. Flood peak discharges were calculated for autumn season by twenty- and hundred-year return period daily precipitation for the periods 2011–2040, 2041–2070 and 2071–2100. Changes in peak discharge probability functions were developed for the water station along the river for each period. The peak discharges will increase by the end of the twenty-first century for the 100-year return period from 9 % at the mouth up to 55 % at the head part of the river basin.
Journal of Hydrology and Hydromechanics | 2015
Nejc Bezak; Alja Horvat; Mojca Šraj
Abstract The detailed analysis of individual flood event elements, including peak discharge (Q), flood event volume (V), and flood event duration (D), is an important step for improving our understanding of complex hydrological processes. More than 2,500 flood events were defined based on the annual maximum (AM) peak discharge from 50 Slovenian gauging stations with catchment areas of between 10 and 10,000 km2. After baseflow separation, the stations were clustered into homogeneous groups and the relationships between the flood event elements and several catchment characteristics were assessed. Different types of flood events were characteristic of different groups. The flashiness of the stream is significantly connected with mean annual precipitation and location of the station. The results indicate that some climatic factors like mean annual precipitation and catchment related attributes as for example catchment area have notable influence on the flood event elements. When assessing the dependency between the pairs of flood event elements (Q, V, D), the highest correlation coefficients were obtained for the Q-V pair. The smallest correlations or no correlations were observed between the Q and D variables.