Molamma P. Prabhakaran
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Molamma P. Prabhakaran.
Biomaterials | 2008
Laleh Ghasemi-Mobarakeh; Molamma P. Prabhakaran; Mohammad Morshed; M.H. Nasr-Esfahani; Seeram Ramakrishna
Nerve tissue engineering is one of the most promising methods to restore nerve systems in human health care. Scaffold design has pivotal role in nerve tissue engineering. Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue-engineering applications. Random and aligned PCL/gelatin biocomposite scaffolds were fabricated by varying the ratios of PCL and gelatin concentrations. Chemical and mechanical properties of PCL/gelatin nanofibrous scaffolds were measured by FTIR, porometry, contact angle and tensile measurements, while the in vitro biodegradability of the different nanofibrous scaffolds were evaluated too. PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (C17.2 cells). MTS assay and SEM results showed that the biocomposite of PCL/gelatin 70:30 nanofibrous scaffolds enhanced the nerve differentiation and proliferation compared to PCL nanofibrous scaffolds and acted as a positive cue to support neurite outgrowth. It was found that the direction of nerve cell elongation and neurite outgrowth on aligned nanofibrous scaffolds is parallel to the direction of fibers. PCL/gelatin 70:30 nanofibrous scaffolds proved to be a promising biomaterial suitable for nerve regeneration.
International Journal of Nanomedicine | 2013
Maedeh Zamani; Molamma P. Prabhakaran; Seeram Ramakrishna
Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications.
Acta Biomaterialia | 2009
Molamma P. Prabhakaran; Jayarama Reddy Venugopal; Seeram Ramakrishna
The current challenge in bone tissue engineering is to fabricate a bioartificial bone graft mimicking the extracellular matrix (ECM) with effective bone mineralization, resulting in the regeneration of fractured or diseased bones. Biocomposite polymeric nanofibers containing nanohydroxyapatite (HA) fabricated by electrospinning could be promising scaffolds for bone tissue engineering. Nanofibrous scaffolds of poly-l-lactide (PLLA, 860+/-110 nm), PLLA/HA (845+/-140 nm) and PLLA/collagen/HA (310+/-125 nm) were fabricated, and the morphology, chemical and mechanical characterization of the nanofibers were evaluated using scanning electron microscopy, Fourier transform infrared spectroscopy and tensile testing, respectively. The in vitro biocompatibility of different nanofibrous scaffolds was also assessed by growing human fetal osteoblasts (hFOB), and investigating the proliferation, alkaline phosphatase activity (ALP) and mineralization of cells on different nanofibrous scaffolds. Osteoblasts were found to adhere and grow actively on PLLA/collagen/HA nanofibers with enhanced mineral deposition of 57% higher than the PLLA/HA nanofibers. The synergistic effect of the presence of an ECM protein, collagen and HA in PLLA/collagen/HA nanofibers provided cell recognition sites together with apatite for cell proliferation and osteoconduction necessary for mineralization and bone formation. The results of our study showed that the biocomposite PLLA/collagen/HA nanofibrous scaffold could be a potential substrate for the proliferation and mineralization of osteoblasts, enhancing bone regeneration.
Biomaterials | 2009
Molamma P. Prabhakaran; Jayarama Reddy Venugopal; Seeram Ramakrishna
Bone marrow Mesenchymal stem cells capable of differentiating into neuronal cells on engineered nanofibrous scaffolds have great potential for bionanomaterial-cell transplantation therapy of neurodegenerative diseases and injuries of the nervous system. MSCs have been the highlight of many tissue engineering studies mainly because of their multipotential properties. We investigated the potential of human bone marrow derived Mesenchymal stem cells (MSCs) for neuronal differentiation in vitro on poly(L-lactic acid)-co-poly-(3-caprolactone)/Collagen (PLCL/Coll) nanofibrous scaffolds. PLCL and PLCL/Coll nanofibrous scaffolds were fabricated by electrospinning process and their chemical and mechanical characterizations were carried out using SEM, contact angle, FTIR, and tensile instrument. The differentiation of MSCs was carried out using neuronal inducing factors including beta-mercaptoethanol, epidermal growth factor, nerve growth factor and brain derived growth factor in DMEM/F12 media. The proliferations of MSCs evaluated by MTS assay showed that the cells grown on PLCL/Coll nanofibrous scaffolds were comparatively higher (80%) than those on PLCL. Scanning electron microscopy results showed that MSCs differentiated on PLCL/Coll nanofibrous scaffolds showed neuronal morphology, with multipolar elongations and expressed neurofilament and nestin protein by immuno-fluorescent microscopy. Our studies on the differentiation of MSCs to neuronal cells on nanofibrous scaffolds suggest their potential application towards nerve regeneration.
Acta Biomaterialia | 2009
Deepika Gupta; Jayarama Reddy Venugopal; Molamma P. Prabhakaran; V.R. Giri Dev; Sharon Low; Aw Tar Choon; Seeram Ramakrishna
The current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps that will produce results similar to autograft without requiring the harvest of autologous donor tissue. Aligned and random polycaprolactone/gelatin (PCL/gelatin) nanofibrous scaffolds were fabricated for the in vitro culture of Schwann cells that assist in directing the growth of regenerating axons in nerve tissue engineering. The average fiber diameter attained by electrospinning of polymer blend (PCL/gelatin) ranged from 232+/-194 to 160+/-86nm with high porosity (90%). Blending PCL with gelatin resulted in increased hydrophilicity of nanofibrous scaffolds and yielded better mechanical properties, approaching those of PCL nanofibers. The biocompatibility of fabricated nanofibers was assessed for culturing and proliferation of Schwann cells by MTS assay. The results of the MTS assay and scanning electron microscopy confirmed that aligned and random PCL/gelatin nanofibrous scaffolds are suitable substrates for Schwann cell growth as compared to PCL nanofibrous scaffolds for neural tissue engineering.
Tissue Engineering Part A | 2008
Molamma P. Prabhakaran; Jayarama Reddy Venugopal; Tan Ter Chyan; Lim Beng Hai; Casey K. Chan; Aymeric Yutang Lim; Seeram Ramakrishna
Bridging of nerve gaps after injury is a major problem in peripheral nerve regeneration. Considering the potential application of a bio-artificial nerve guide material, polycaprolactone (PCL)/chitosan nanofibrous scaffolds was designed and evaluated in vitro using rat Schwann cells (RT4-D6P2T) for nerve tissue engineering. PCL, chitosan, and PCL/chitosan nanofibers with average fiber diameters of 630, 450, and 190 nm, respectively, were fabricated using an electrospinning process. The surface chemistry of the fabricated nanofibers was determined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Simple blending of PCL with chitosan proved an easy and efficient method for fabricating PCL/chitosan nanofibrous scaffolds, whose surface characteristics proved more hydrophilic than PCL nanofibers. Evaluation of mechanical properties showed that the Youngs modulus and strain at break of the electrospun PCL/chitosan nanofibers were better than those of the chitosan nanofibers. Results of cell proliferation studies on nanofibrous scaffolds using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay showed 48% more cell proliferation on PCL/chitosan scaffolds than on PCL scaffolds after 8 days of culture. PCL/chitosan scaffolds showed better cell proliferation than PCL scaffolds and maintained their characteristic cell morphology, with spreading bipolar elongations to the nanofibrous substrates. This electrospun nanofibrous matrix thus proved of specific interest in tissue engineering for peripheral nerve regeneration.
Journal of Biomedical Materials Research Part B | 2011
Dan Kai; Molamma P. Prabhakaran; Guorui Jin; Seeram Ramakrishna
Cardiac tissue engineering (TE) is one of the most promising strategies to reconstruct the infarct myocardium and the major challenge involves producing a bioactive scaffold with anisotropic properties that assist in cell guidance to mimic the heart tissue. In this study, random and aligned poly(ε-caprolactone)/gelatin (PG) composite nanofibrous scaffolds were electrospun to structurally mimic the oriented extracellular matrix (ECM). Morphological, chemical and mechanical properties of the electrospun PG nanofibers were evaluated by scanning electron microscopy (SEM), water contact angle, attenuated total reflectance Fourier transform infrared spectroscopy and tensile measurements. Results indicated that PG nanofibrous scaffolds possessed smaller fiber diameters (239 ± 37 nm for random fibers and 269 ± 33 nm for aligned fibers), increased hydrophilicity, and lower stiffness compared to electrospun PCL nanofibers. The aligned PG nanofibers showed anisotropic wetting characteristics and mechanical properties, which closely match the requirements of native cardiac anisotropy. Rabbit cardiomyocytes were cultured on electrospun random and aligned nanofibers to assess the biocompatibility of scaffolds, together with its potential for cell guidance. The SEM and immunocytochemical analysis showed that the aligned PG scaffold greatly promoted cell attachment and alignment because of the biological components and ordered topography of the scaffolds. Moreover, we concluded that the aligned PG nanofibrous scaffolds could be more promising substrates suitable for the regeneration of infarct myocardium and other cardiac defects.
Journal of the Royal Society Interface | 2012
Jayarama Reddy Venugopal; Molamma P. Prabhakaran; Shayanti Mukherjee; Rajeswari Ravichandran; Kai Dan; Seeram Ramakrishna
World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Acta Biomaterialia | 2011
Guorui Jin; Molamma P. Prabhakaran; Seeram Ramakrishna
Bone marrow (BM) mesenchymal stem cells (MSC) capable of differentiating along the epidermal lineage on engineered nanofibrous scaffolds have great potential for bionanomaterial-cell transplantation therapy of skin wounds. MSC have been the focus of many tissue engineering studies, mainly because of their multipotential properties. We investigated the potential of human BM-derived MSC for epidermal cell differentiation in vitro on electrospun collagen/poly(l-lactic acid)-co-poly(3-caprolactone) (Coll/PLLCL) nanofibrous scaffolds. PLLCL and Coll/PLLCL nanofibrous scaffolds were fabricated by an electrospinning process and their chemical and mechanical characterization carried out by scanning electron microscopy (SEM), water contact angle determination, Fourier transform infrared spectroscopy, and tensile testing. The differentiation of MSC was carried out using epidermis inducing factors, including epidermal growth factor (EGF) and 1,25-dihydroxyvitamin D(3), in culture medium. The proliferation of MSC evaluated by cell proliferation assay showed that the number of cells grown on Coll/PLLCL nanofibrous scaffolds was significantly higher than those on PLLCL scaffolds. The SEM results showed that MSC differentiated on Coll/PLLCL nanofibrous scaffolds showed a round keratinocyte morphology and expressed keratin 10, filaggrin and partial involucrin protein by immunofluorescent microscopic studies. The interaction of MSC and nanofibers was studied and we concluded that the electrospun Coll/PLLCL nanofibers could mimic the native skin extracellular matrix environment and are promising substrates for advanced skin tissue engineering. Our studies on the differentiation of MSC along the epidermal lineage on nanofibrous scaffolds suggest their potential application in skin regeneration without regional differentiation.
Nanotechnology | 2008
Molamma P. Prabhakaran; Jayarama Reddy Venugopal; Casey K. Chan; Seeram Ramakrishna
The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.