Molly G. Bright
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Molly G. Bright.
NeuroImage | 2012
Daniel P. Bulte; Michael Kelly; Michael Germuska; Jingyi Xie; Michael A. Chappell; Thomas W. Okell; Molly G. Bright; Peter Jezzard
Functional magnetic resonance imaging typically measures signal increases arising from changes in the transverse relaxation rate over small regions of the brain and associates these with local changes in cerebral blood flow, blood volume and oxygen metabolism. Recent developments in pulse sequences and image analysis methods have improved the specificity of the measurements by focussing on changes in blood flow or changes in blood volume alone. However, FMRI is still unable to match the physiological information obtainable from positron emission tomography (PET), which is capable of quantitative measurements of blood flow and volume, and can indirectly measure resting metabolism. The disadvantages of PET are its cost, its availability, its poor spatial resolution and its use of ionising radiation. The MRI techniques introduced here address some of these limitations and provide physiological data comparable with PET measurements. We present an 18-minute MRI protocol that produces multi-slice whole-brain coverage and yields quantitative images of resting cerebral blood flow, cerebral blood volume, oxygen extraction fraction, CMRO(2), arterial arrival time and cerebrovascular reactivity of the human brain in the absence of any specific functional task. The technique uses a combined hyperoxia and hypercapnia paradigm with a modified arterial spin labelling sequence.
NeuroImage | 2013
Molly G. Bright; Kevin Murphy
Differing noise variance across study populations has been shown to cause artifactual group differences in functional connectivity measures. In this study, we investigate the use of short echo time functional MRI data to correct for these noise sources in blood oxygenation level dependent (BOLD)-weighted time series. A dual‐echo sequence was used to simultaneously acquire data at both a short (TE = 3.3 ms) and a BOLD-weighted (TE = 35 ms) echo time. This approach is effectively “free,” using dead-time in the pulse sequence to collect an additional echo without affecting overall scan time or temporal resolution. The proposed correction method uses voxelwise regression of the short TE data from the BOLD-weighted data to remove noise variance. In addition to a typical resting state scan, non-compliant behavior associated with patient groups was simulated via increased head motion or physiological fluctuations in 10 subjects. Short TE data showed significant correlations with the traditional motion-related and physiological noise regressors used in current connectivity analyses. Following traditional preprocessing, the extent of significant additional variance explained by the short TE data regressors was significantly correlated with the average head motion across the scan in the resting data (r2 = 0.93, p < 0.0001). The reduction in data variance following the inclusion of short TE regressors was also correlated with scan head motion (r2 = 0.48, p = 0.027). Task-related data were used to demonstrate the effects of the short TE correction on BOLD activation time series with known temporal structure; the size and strength of the activation were significantly decreased, but it is not clear whether this reflects BOLD contamination in the short TE data or correlated changes in blood volume. Finally, functional connectivity maps of the default mode network were constructed using a seed correlation approach. The effects of short TE correction and low-pass filtering on the resulting correlations maps were compared. Results suggest that short TE correction more accurately differentiates artifactual correlations from the correlations of interest in conditions of amplified noise.
NeuroImage | 2015
Molly G. Bright; Kevin Murphy
Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured “signal” as well as “noise.” Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors.
NeuroImage | 2013
Molly G. Bright; Kevin Murphy
Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC < 0.4) in several regions analysed. In contrast, the end-tidal CO2 regressors resulted in “excellent” repeatability (ICC = 0.82) in the average grey matter data, and resulted in acceptable repeatability in all smaller regions tested (ICC > 0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice.
Journal of Cerebral Blood Flow and Metabolism | 2011
Molly G. Bright; Manus J. Donahue; Jeff H. Duyn; Peter Jezzard; Daniel P. Bulte
Cerebrovascular reactivity to vasodilatory hypercapnic and vasoconstrictive hypocapnic challenges is known to be altered in several hemodynamic disorders, which is often attributable to changes in smooth muscle-mediated vascular compliance. Recently, attenuated reactivity to hypercapnia but enhanced reactivity to hypocapnia was observed in patients with chronic stroke. We hypothesize that the latter observation could be explained by a change in the basal vascular tone. In particular, reduced cerebral perfusion pressure, as is prevalent in these patients, may cause vasodilation through autoregulatory mechanisms, and this compensatory baseline condition may alter reactivity to vasoconstrictive hypocapnic challenges. To test this hypothesis, a predilated vascular condition was created in young, healthy subjects (n = 11; age = 23 to 36 years) using inhalation of 4% CO2. Using blood oxygenation level-dependent functional magnetic resonance imaging at 3 T, breath holding and cued deep breathing respiratory challenges were administered to assess hypercapnia and hypocapnia reactivity, respectively. During the predilated condition, vasoconstrictive reactivity to hypocapnia was significantly (21.1%, P = 0.016) enhanced throughout the gray matter, whereas there was no significant change (6.4%, P = 0.459) in hypercapnic vasodilatory reactivity. This suggests that baseline vasodilation may explain the enhanced hypocapnia reactivity observed in some stroke patients, and that hypocapnia challenges may help identify the level of vascular compliance in patients with reduced cerebral perfusion pressure.
NeuroImage | 2016
Prejaas Tewarie; Molly G. Bright; Arjan Hillebrand; Siân E. Robson; Lauren E. Gascoyne; Peter G. Morris; Jil Meier; P. Van Mieghem; Matthew J. Brookes
Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology.
The Journal of Neuroscience | 2016
Ian D. Driver; Joseph R. Whittaker; Molly G. Bright; Suresh Daniel Muthukumaraswamy; Kevin Murphy
A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited. SIGNIFICANCE STATEMENT In this study, we show for the first time that neuronal oscillatory power is intimately linked to arterial CO2 concentration down to the fine-scale modulations that occur during spontaneous breathing. We extend these results to demonstrate a correlation between neuronal oscillatory power and spontaneous arterial CO2 fluctuations in awake humans at rest. This work identifies a need for studies investigating resting-state networks in the human brain to measure and account for the impact of spontaneous changes in arterial CO2 on the neuronal signals of interest. Changes in breathing pattern that are time locked to task performance could also lead to confounding effects on neuronal oscillatory power when considering the electrophysiological response to functional stimulation.
NeuroImage | 2016
Joseph R. Whittaker; Ian D. Driver; Molly G. Bright; Kevin Murphy
Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in CBF, as opposed to the change relative to baseline, may more closely match the underlying increase in neural activity in response to a stimulus.
NeuroImage | 2014
Molly G. Bright; Marta Bianciardi; Jacco A. de Zwart; Kevin Murphy; Jeff H. Duyn
Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin.
NeuroImage | 2017
Molly G. Bright; Christopher R. Tench; Kevin Murphy
&NA; In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time‐series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear Model, and the “cleaned” residuals of this fit are used in further analysis. We examine the statistical assumptions and requirements of the General Linear Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples and real data we show how pre‐whitening, temporal filtering and temporal shifting of regressors impact model fit. Based on our own observations, existing literature, and statistical theory, we make the following recommendations when employing nuisance regression: pre‐whitening should be applied to achieve valid statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited, should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and precise noise models for cleaning the resting state fMRI time‐series. HighlightsPre‐whitening should be used in nuisance regression of resting state fMRI data.Incorporating temporal filtering into GLM accounts for changed degrees of freedom.Temporally shifting of nuisance regressors is sometimes warranted and advised.Optimal temporal shifts may not be reliably estimated from resting state data.Established nuisance regressors should be routinely assessed in new datasets.