Mona Elsafadi
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mona Elsafadi.
Stem Cells International | 2016
Mona Elsafadi; Muthurangan Manikandan; Muhammad Atteya; Jamil Amjad Hashmi; Zafar Iqbal; Abdullah Aldahmash; Musaad Alfayez; Moustapha Kassem; Amer Mahmood
Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures.
BMC Oral Health | 2014
Ahmad AlKahtani; Sarah M Alkahtany; Amer Mahmood; Mona Elsafadi; Abdullah Aldahmash; Sukumaran Anil
BackgroundDebridement and disinfection of the root canal system is a crucial step in endodontic procedures. The effectiveness of irrigation relies on both the mechanical flushing action and the ability of irrigants to dissolve tissue and kill bacteria. The objective of the present study is to evaluate and compare the cytotoxicity of QMix™ root canal irrigating solution on immortalized human bone marrow mesenchymal stem cells (hTERT-MSC-C1) and to compare it with that of sodium hypochlorite (NaOCl).MethodsImmortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to QMix™ and NaOCl. Cell viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology was studied after two hours of exposure to QMix™ and NaOCl. Scanning electron microscopy (SEM) analyses were performed after 2- and 4-hour incubation periods. Finally, ethidium bromide/acridine orange (EB/AO) fluorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 hours to detect live and dead cells. The observations were tabulated and analyzed statistically.ResultsQMix™ exposure resulted in a significantly higher percentage of cell viability than NaOCl in the MTT and alamarBlue assays at three time points compared to the control. The SEM analysis demonstrated minimal morphological changes associated with cells that were exposed to the QMix™ solution, with little shrinkage and fragmentation of the cell wall. The live/dead analysis showed that the number of live cells after exposure to QMix™ was similar to that of the untreated control. No cell structure could be observed with the NaOCl group, indicating cell lysis.ConclusionBoth the QMix™ and NaOCl solutions were toxic to human bone marrow MSCs. Each solution might have induced cell death in a different way as evidenced in the cell viability, SEM and fluorescent studies. The slower cell death induced by QMix™ might therefore be less aggressive and more acceptable to living tissues.
Asian Pacific Journal of Cancer Prevention | 2013
Abdullah Aldahmash; Muhammad Atteya; Mona Elsafadi; May Al-Nbaheen; Husain Adel Al-Mubarak; Radhakrishnan Vishnubalaji; Ali H. Al-Roalle; Suzan Alharbi; Muthurangan Manikandan; Klaus Ingo Matthaei; Amer Mahmood
BACKGROUND Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. MATERIALS AND METHODS BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal- Wallis analysis of variance and median test. RESULTS Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). CONCLUSIONS ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.
Cell Death and Disease | 2016
Mona Elsafadi; Muthurangan Manikandan; Raed Abu Dawud; Nehad M. Alajez; Rimi Hamam; Musaed Al-Fayez; Moustapha Kassem; Abdullah Aldahmash; Amer Mahmood
Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application.
Stem Cells and Development | 2012
Amer Mahmood; Linda Harkness; Basem M. Abdallah; Mona Elsafadi; May Al-Nbaheen; Abdullah Aldahmash; Moustapha Kassem
Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for functional osteogenic cells.
Cellular Reprogramming | 2014
Suzan Alharbi; Mona Elsafadi; Mohammed Mobarak; Ali Alrwili; Radhakrishnan Vishnubalaji; Muthurangan Manikandan; Fatma Al-Qudsi; Saleh Karim; May Salem Alnabaheen; Abdullah Aldahmash; Amer Mahmood
The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.
Stem Cells International | 2018
Mona Elsafadi; Muthurangan Manikandan; Sami Almalki; Mohammad Mobarak; Muhammad Atteya; Zafar Iqbal; Jamil Amjad Hashmi; Sameerah Shaheen; Nehad M. Alajez; Musaad Alfayez; Moustapha Kassem; Raed Abu Dawud; Amer Mahmood
TGFβ is a potent regulator of several biological functions in many cell types, but its role in the differentiation of human bone marrow-derived skeletal stem cells (hMSCs) is currently poorly understood. In the present study, we demonstrate that a single dose of TGFβ1 prior to induction of osteogenic or adipogenic differentiation results in increased mineralized matrix or increased numbers of lipid-filled mature adipocytes, respectively. To identify the mechanisms underlying this TGFβ-mediated enhancement of lineage commitment, we compared the gene expression profiles of TGFβ1-treated hMSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGFβl treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton. To investigate further, we examined the actin cytoskeleton following treatment with TGFβ1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment of pathways related to osteogenesis and adipogenesis and of genes regulated by both TGFβ1 and cytochalasin D. Our study demonstrates that TGFβ1 enhances hMSC commitment to either the osteogenic or adipogenic lineages by reorganizing the actin cytoskeleton.
Journal of Thermal Biology | 2018
Islam M. Saadeldin; Ayman Abdel-Aziz Swelum; Mona Elsafadi; Amer Mahmood; Musaad Alfayez; Abdullah N. Alowaimer
The dromedary camel (Camel dromedarius) is physiologically well adapted to life in hot, dry and barren land. In the present study, we report the tolerance of camel oocytes and cumulus cells to acute and chronic heat shock. Camel oocytes and cumulus cells were exposed to acute (45 °C for 2 h) and chronic (45 °C for 20 h) heat shock. Our results demonstrated that acute and chronic heat shock altered malondialdehyde concentration, which is a marker for oxidative stress. Furthermore, the heat shock reduced glutathione levels during in vitro oocyte maturation. The expression of two well-known heat shock proteins HSP70 and HSP90 were increased similarly in oocytes and cumulus cells after acute heat shock. Oocytes were less tolerant to the short acute heat shock, and showed decreased maturation, which leads to reduction in ooplasmic diameter and an increase in chromosomal count abnormalities. Furthermore, the pro-apoptotic genes P53 and BAX had increased expression levels, whereas for the anti-apoptotic gene such as BCL2 expression levels was decreased. On the other hand, the cumulus cells tolerated acute and chronic heat shock, as evident by the increase in HSP70 and HSP90 expression and steady expression levels of P53, BAX, and BCL2 after acute hyperthermia. Cumulus cells regained their vitality and ability to proliferate after chronic hyperthermia and showed wound healing capabilities after 9 days of chronic hyperthermia. Collectively, these results indicate the adaptive tolerance of camel somatic cells to acute and chronic heat shock, which is lethal to cells in many other mammals.
Scientific Reports | 2017
Mona Elsafadi; Muthurangan Manikandan; Muhammad Atteya; Raed Abu Dawud; Sami Almalki; Zahid Ali Kaimkhani; Abdullah Aldahmash; Nehad M. Alajez; Musaad Alfayez; Moustapha Kassem; Amer Mahmood
TGF-β1, a multifunctional regulator of cell growth and differentiation, is the most abundant bone matrix growth factor. During differentiation of human bone stromal cells (hBMSCs), which constitute bone marrow osteoblast (OS) and adipocyte (AD) progenitor cells, continuous TGF-β1 (10 ng/ml) treatment enhanced OS differentiation as evidenced by increased mineralised matrix production. Conversely, pulsed TGF-β1 administration during the commitment phase increased mature lipid-filled adipocyte numbers. Global gene expression analysis using DNA microarrays in hBMSCs treated with TGF-β1 identified 1587 up- and 1716 down-regulated genes in OS-induced, TGF-β1-treated compared to OS-induced hBMSCs (2.0 fold change (FC), p < 0.05). Gene ontology (GO) analysis revealed enrichment in ‘osteoblast differentiation’ and ‘skeletal system development-associated’ genes and up-regulation of several genes involved in ‘osteoblastic-differentiation related signalling pathways’. In AD-induced, TGF-β1-treated compared to AD-induced hBMSCs, we identified 323 up- and 369 down-regulated genes (2.0 FC, p < 0.05) associated with ‘fat cell differentiation’, ‘fatty acid derivative biosynthesis process’, ‘fatty acid derivative metabolic process’, and ‘inositol lipid-mediated’. Serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2) was down-regulated 3-fold in TGF-β1-treated hBMSCs. siRNA-mediated SERPINB2 inhibition enhanced OS and AD differentiation. Thus, TGF-β signalling is important for hBMSC OS and AD differentiation and SERPINB2 is a TGF-β-responsive gene that plays a negative regulatory role in hBMSC differentiation.
Stem Cell Research | 2017
Mona Elsafadi; Muthurangan Manikandan; Nehad M. Alajez; Rimi Hamam; Raed Abu Dawud; Abdullah Aldahmash; Zafar Iqbal; Musaad Alfayez; Moustapha Kassem; Amer Mahmood