Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mona Sæbø is active.

Publication


Featured researches published by Mona Sæbø.


BMC Cancer | 2006

Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

Camilla Furu Skjelbred; Mona Sæbø; Håkan Wallin; Bjørn A. Nexø; Per Christian Hagen; Inger Marie Bowitz Lothe; Steinar Aase; Egil Johnson; Inger-Lise Hansteen; Ulla Vogel; Elin H. Kure

BackgroundGenetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively.MethodsWe used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg194Trp, Arg280His, Arg399Gln, XRCC3 Thr241Met and XPD Lys751Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption.ResultsThe XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas.ConclusionOur results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg280His polymorphism and a reduced risk associated with the XRCC1 Arg399Gln polymorphism. Interestingly, individuals with the XPD Lys751Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas.


BMC Cancer | 2006

The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals

Lotte K. Vogel; Mona Sæbø; Camilla Furu Skjelbred; Kathrine Abell; Esben Pedersen; Ulla Vogel; Elin H. Kure

BackgroundIt has recently been shown that overexpression of the serine protease, matriptase, in transgenic mice causes a dramatically increased frequency of carcinoma formation. Overexpression of HAI-1 and matriptase together changed the frequency of carcinoma formation to normal. This suggests that the ratio of matriptase to HAI-1 influences the malignant progression. The aim of this study has been to determine the ratio of matriptase to HAI-1 mRNA expression in affected and normal tissue from individuals with colorectal cancer adenomas and carcinomas as well as in healthy individuals, in order to determine at which stages a dysregulated ratio of matriptase/HAI-1 mRNA is present during carcinogenesis.MethodsUsing quantitative RT-PCR, we have determined the mRNA levels for matriptase and HAI-1 in colorectal cancer tissue (n = 9), severe dysplasia (n = 15), mild/moderate dysplasia (n = 21) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 10). Matriptase and HAI-1 mRNA levels were normalized to β-actin.ResultsMatriptase mRNA level was lower in carcinomas compared to normal tissue from healthy individuals (p < 0.01). In accordance with this, the matriptase mRNA level was also lower in adenomas/carcinomas combined as compared to their adjacent normal tissue (p < 0.01). HAI-1 mRNA levels in both normal and affected tissue from individuals with severe dysplasia or carcinomas and in affected tissue with mild/moderate dysplasia were all significantly lower than mRNA levels observed in corresponding tissue from healthy control individuals. HAI-1 mRNA was lower in carcinomas as compared to normal tissue from healthy individuals (p < 0.001). HAI-1 mRNA levels were significantly lower in tissue displaying mild/moderate (p < 0.001) and severe (p < 0.01) dysplasia compared to normal tissue from the same patients. Both adenomas and carcinomas displayed a significantly different matriptase/HAI-1 mRNA ratio than corresponding normal tissue from healthy control individuals (p < 0.05). In addition statistically significant difference (p < 0.001) could be observed between mild/moderate and severe adenomas and their adjacent normal tissue.ConclusionOur results show that dysregulation of the matriptase/HAI-1 mRNA ratio occurs early during carcinogenesis. Future studies are required to clarify whether the dysregulated matriptase/HAI-1 ratio was causing the malignant progression or is a consequence of the same.


BMC Cancer | 2007

Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas

Camilla Furu Skjelbred; Mona Sæbø; Anette Hjartåker; Tom Grotmol; Inger-Lise Hansteen; Kjell Magne Tveit; Geir Hoff; Elin H. Kure

BackgroundThe risk of sporadic colorectal cancer (CRC) is mainly associated with lifestyle factors, particularly dietary factors. Diets high in red meat and fat and low in fruit and vegetables are associated with an increased risk of CRC. The dietary effects may be modulated by genetic polymorphisms in biotransformation genes. In this study we aimed to evaluate the role of dietary factors in combination with genetic factors in the different stages of colorectal carcinogenesis in a Norwegian population.MethodsWe used a case-control study design (234 carcinomas, 229 high-risk adenomas, 762 low-risk adenomas and 400 controls) to test the association between dietary factors (meat versus fruit, berries and vegetables) genetic polymorphisms in biotransformation genes (GSTM1, GSTT1, GSTP1 Ile105Val, EPHX1 Tyr113His and EPHX1 His139Arg), and risk of colorectal carcinomas and adenomas. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression.ResultsA higher ratio of total meat to total fruit, berry and vegetable intake was positively associated with both high and low-risk adenomas, with approximately twice the higher risk in the 2nd quartile compared to the lowest quartile. For the high-risk adenomas this positive association was more obvious for the common allele (Tyr allele) of the EPHX1 codon 113 polymorphism. An association was also observed for the EPHX1 codon 113 polymorphism in the low-risk adenomas, although not as obvious.ConclusionAlthough, the majority of the comparison groups are not significant, our results suggest an increased risk of colorectal adenomas in individuals for some of the higher ratios of total meat to total fruit, berry and vegetable intake. In addition the study supports the notion that the biotransformation enzymes GSTM1, GSTP1 and EPHX1 may modify the effect of dietary factors on the risk of developing colorectal carcinoma and adenoma.


BMC Cancer | 2006

Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study

Camilla Furu Skjelbred; Mona Sæbø; Bjørn A. Nexø; Håkan Wallin; Inger-Lise Hansteen; Ulla Vogel; Elin H. Kure

BackgroundThe risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas.MethodsWe used a case-control study design (156 carcinomas, 981 adenomas and 399 controls) to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (CI) were estimated by binary logistic regression model adjusting for age and gender.ResultsThe ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06–1.81), which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15–2.39). The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49–1.01) and carcinomas (OR of 0.49, 95% CI 0.21–1.13) among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95–5.04) compared to all non-carriers although the estimate was not statistically significant.ConclusionWe found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women.


BMC Cancer | 2006

Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas

Mona Sæbø; Camilla Furu Skjelbred; Bjørn A. Nexø; Håkan Wallin; Inger-Lise Hansteen; Ulla Vogel; Elin H. Kure

BackgroundThe majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation.MethodsWe have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas.ResultsComparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10-5) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively.ConclusionOur results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas.


Aquatic Toxicology | 2013

Molecular responses to toxicological stressors: profiling microRNAs in wild Atlantic salmon (Salmo salar) exposed to acidic aluminum-rich water.

Elin H. Kure; Mona Sæbø; Astrid M. Stangeland; Julian Hamfjord; Sigurd Hytterød; Jan Heggenes; Espen Lydersen

Atlantic salmon (Salmo salar) is among the most sensitive organisms toward acidic, aluminum exposure. Main documented responses to this type of stress are a combination of hypoxia and loss of blood plasma ions. Physiological responses to stress in fish are often grouped into primary, secondary and tertiary responses, where the above mentioned effects are secondary responses, while primary responses include endocrine changes as measurable levels of catecholamines and corticosteroids. In this study we have exposed young (14 months) Atlantic salmon to acid/Al water (pH ≈ 5.6, Al(i) ≈ 80 μg L⁻¹) for 3 days, and obtained clear and consistent decrease of Na⁺ and Cl⁻ ions, and increases of glucose in blood plasma, hematocrit and P(CO₂) in blood. We did not measure plasma cortisol (primary response compound), but analyzed effects on microRNA level (miRNA) in muscle tissue, as this may represent initial markers of primary stress responses. miRNAs regulate diverse biological processes, many are evolutionarily conserved, and hundreds have been identified in various animals, although only in a few fish species. We used a novel high-throughput sequencing (RNA-Seq) method to identify miRNAs in Atlantic salmon and specific miRNAs as potential early markers for stress. A total of 18 miRNAs were significantly differentially expressed (FDR<0.1) in exposed compared to control fish, four down-regulated and 14 up-regulated. An unsupervised hierarchical clustering of significant miRNAs revealed two clusters representing exposed and non-exposed individuals. Utilizing the genome of the zebrafish and bioinformatic tools, we identified 224 unique miRNAs in the Atlantic salmon samples sequenced. Additional laboratory studies focusing on function, stress dose-responses and temporal expression of the identified miRNAs will facilitate their use as initial markers for stress responses.


PLOS ONE | 2013

Low ABCB1 Gene Expression Is an Early Event in Colorectal Carcinogenesis

Vibeke Andersen; Ulla Vogel; Sine Godiksen; Franz B. Frenzel; Mona Sæbø; Julian Hamfjord; Elin H. Kure; Lotte K. Vogel

The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC). NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407). ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-moderate dysplasia) and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P<0.05 for both), morphologically normal tissues close to the tumour (P<0.05), morphologically normal tissue at a distance from the tumour (P<0.05) and CRC tissue (P<0.001). Furthermore, ABCB1 mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P<0.01). The ABCB1 C-rs3789243-T and NFKB1 -94ins/del homozygous variant genotypes were associated with low ABCB1 mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P<0.05 for both). NFKB1 mRNA levels were lower in both tumour and normal tissue from cancer patients (P<0.001) as compared to healthy individuals but we were unable to show association between NFKB1 -94ins/del genotype and NFKB1 mRNA levels. This study suggests that low ABCB1 mRNA levels are an early event in CRC development and that the two polymorphisms affect ABCB1 mRNA levels whereas low NFKB1 mRNA levels occur later in carcinogenesis. Low ABCB1 protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic ABCB1 substrates.


PLOS ONE | 2015

High ABCC2 and Low ABCG2 Gene Expression Are Early Events in the Colorectal Adenoma-Carcinoma Sequence

Vibeke Andersen; Lotte K. Vogel; Tine Iskov Kopp; Mona Sæbø; Annika W. Nonboe; Julian Hamfjord; Elin H. Kure; Ulla Vogel

Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy. We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011). In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.


PLOS ONE | 2014

Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis.

Lotte K. Vogel; Mona Sæbø; Helle Høyer; Tine Iskov Kopp; Ulla Vogel; Sine Godiksen; Franz B. Frenzel; Julian Hamfjord; Inger Marie Bowitz-Lothe; Egil Johnson; Elin H. Kure; Vibeke Andersen

Background & Aims Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation. Methods PTGS2 mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional PTGS2 polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from the Norwegian KAM cohort. Results PTGS2 mRNA levels were higher in mild/moderate adenoma tissue compared to morphologically normal tissue from the same individual (P<0.0001) and (P<0.035) and compared to mucosa from healthy individuals (P<0.0039) and (P<0.0027), respectively. In CRC patients, PTGS2 mRNA levels were 8–9 times higher both in morphologically normal tissue and in cancer tissue, compared to healthy individuals (P<0.0001). PTGS2 A-1195G variant allele carriers were at reduced risk of CRC (odds ratio (OR) = 0.52, 95% confidence interval (95% CI): 0.28–0.99, P = 0.047). Homozygous carriers of the haplotype encompassing the A-1195G and G-765C wild type alleles and the T8473C variant allele (PTGS2 AGC) were at increased risk of CRC as compared to homozygous carriers of the PTGS2 AGT (A-1195G, G-765C, T8473C) haplotype (OR = 5.37, 95% CI: 1.40–20.5, P = 0.014). No association between the investigated polymorphisms and PTGS2 mRNA levels could be detected. Conclusion High intestinal PTGS2 mRNA level is an early event in colorectal cancer development as it occurs already in mild/moderate dysplasia. PTGS2 polymorphisms that have been associated with altered PTGS2 mRNA levels/COX-2 activity in some studies, although not the present study, were associated with colorectal cancer risk. Thus, both PTGS2 polymorphisms and PTGS2 mRNA levels may provide information regarding CRC risk.


BMC Medical Genetics | 2009

The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

Vibeke Andersen; Lene Agerstjerne; Dorte Jensen; Mette Østergaard; Mona Sæbø; Julian Hamfjord; Elin H. Kure; Ulla Vogel

BackgroundSmoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this MDR1 polymorphism was associated with risk of colorectal adenoma (CA) and CRC in the Norwegian population.MethodsUsing a case-control design, the association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression.ResultsNo association was found between the MDR1 polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72–1.29) for developing adenomas, and 0.70 (0.41–1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers.ConclusionThe MDR1 intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this MDR1 polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.

Collaboration


Dive into the Mona Sæbø's collaboration.

Top Co-Authors

Avatar

Elin H. Kure

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ulla Vogel

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lotte K. Vogel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vibeke Andersen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sine Godiksen

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge