Monalisa Mohapatra
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monalisa Mohapatra.
Langmuir | 2011
Monalisa Mohapatra; Ashok Kumar Mishra
The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases.
Journal of Physical Chemistry B | 2011
Monalisa Mohapatra; Ashok Kumar Mishra
A detailed photophysical study of the plant flavonoid fisetin in a dimyristoylphosphatidylcholine (DMPC) bilayer membrane has been carried out. Fisetin is found to partition well into the membrane (K(p) = (4.6 ± 0.5) × 10(5) in solid gel phase and (5.1 ± 0.5) × 10(5) in liquid crystalline phase). A fluorescence quenching study using cetylpyridinium chloride (CPC) as the quencher suggests that fisetin molecules are generally present near the head group region of the lipid bilayer membrane. The temperature dependence of the fluorescence lifetime indicates a local heterogeneity in the distribution of fisetin within the bilayer membrane. The phototautomer form of fisetin, which is the primary emitting species from the lipid membrane, has a large Stokes shift (175 nm) and fluoresces with an intense green fluorescence, which can make the molecule a good dye for marker and bioimaging applications. Membrane-bound fisetin shows sensitive variations of fluorescence intensity, lifetime, and anisotropy parameters in cholesterol-containing DMPC membranes, in mixed phospholipids, and as a function of temperature. This suggests that fisetin can be an efficient fluorescent molecular probe for sensing lipid bilayer membrane related changes. The location of fisetin in the membrane and the observed cholesterol-induced expulsion of fisetin may possibly have implications in the antioxidant activity of fisetin.
Journal of Physical Chemistry B | 2010
Monalisa Mohapatra; Ashok Kumar Mishra
In this study, 1-naphthol has been used as a sensitive ESPT fluorescent molecular probe to investigate the interaction of submicellar concentrations of two physiologically important bile salts, sodium deoxycholate and sodium cholate, with dipalmitoylphosphatidylcholine small unilamellar vesicles in solid gel and liquid crystalline phases. Steady-state and time-resolved fluorescence of the two excited state prototropic forms of 1-naphthol indicate that the incorporation of monomeric bile salt molecules in the lipid bilayer membrane induces appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (≤1 mM) concentrations of the bile salts.
Journal of Physical Chemistry A | 2013
Avik Kumar Pati; Monalisa Mohapatra; Pokhraj Ghosh; Santosh J. Gharpure; Ashok Kumar Mishra
The present work focuses on the current interest in diyne bridged chromophores necessitating a clearer understanding of the photophysics of such molecules. The significance of the diyne moiety in the photophysics has been investigated by synthesizing simple substituted diphenyl butadiynyl derivatives following a quick and efficient microwave assisted Eglinton coupling of terminal alkynes. Emission of the fluorophores is observed from the usual locally excited (LE) state and intramolecular charge transfer (ICT) state. Separation of pure ICT emission from pure LE emission has been carried out by Gaussian/Lorentzian curve fitting. The vibronic coupling in the local transitions appears to be confined to the normal mode involving the C-C triple bond stretching of the diyne moiety. This implies that the LE transition involves the diyne moiety, a conclusion supported by quantum chemical calculations. The resolved ICT emission follows double linear dependence on ET(30) solvent polarity scale. The important role of the diyne moiety in the photophysics of this class of molecules is clearly discernible in this study.
Langmuir | 2013
Monalisa Mohapatra; Ashok Kumar Mishra
The photophysical behavior of 8-anilino-1-naphthalenesulphonate (ANS) in vesicles of dipalmitoylphosphatidylcholine (DPPC), a pulmonary surfactant, has been carried out in a detailed manner. ANS shows notable variations in fluorescence intensity, lifetime, and anisotropy parameters as it gets into the vesicle. It was found that ANS partitions well into the DPPC bilayer membrane with an estimated partition coefficient of ~2.0 × 10(5). Among the various fluorescence parameters of ANS, fluorescence anisotropy was found to be most responsive to the temperature induced phase change of the bilayer membrane. These interesting fluorescence parameters of ANS were then used to study the hydration of lipid bilayer membrane by submicellar concentration of bile salts. From the steady-state fluorescence intensity and dynamic fluorescence lifetime analyses it is clear that ANS is able to probe the submicellar concentration (≤1 mM) of bile salt induced hydration of lipid bilayer membrane that accompanies expulsion of ANS from the bilayer to the aqueous bulk phase. Lower-temperature shift in the phase transition of DPPC bilayer indicates that fluorescence anisotropy of ANS is sensitive enough to the bile salt induced perturbation in the packed acyl chains of DPPC bilayer and modification in the membrane fluidity. In presence of sodium deoxycholate (NaDC) and sodium cholate (NaC) in DPPC vesicles, ANS experiences restriction in rotational mobility which is evident from the variation in steady-state fluorescence anisotropy and fluorescence anisotropy decay parameters.
Physical Chemistry Chemical Physics | 2013
Jitendriya Swain; Monalisa Mohapatra; Santosh Ramdas Borkar; Indrapal Singh Aidhen; Ashok Kumar Mishra
This work focuses on the study of aqueous phase aggregation of the recently FDA approved oral drug molecule FTY720 (fingolimod hydrochloride) and its effect on dimyristoylphosphatidylcholine (DMPC) liposomes using different fluorescent molecular probes and fluorescence parameters. The variation of the steady state fluorescence intensity of 8-anilino-1-naphthalene sulfonic acid (ANS) with FTY720 in water shows an efficient micellar aggregation with the critical micellar concentration (CMC) at ~75 μM. The aggregation number calculation from steady state fluorescence quenching of pyrene shows the formation of small micellar aggregates in aqueous solution having an aggregation number of 42 ± 3 with the free energy of micellization ~-23 kJ mol(-1). Fluorescence intensity and lifetime decay analysis of the molecular probe 1-naphthol indicate that the interaction of FTY720 with the DMPC lipid bilayer membrane prevents partitioning of small molecules such as 1-naphthol to the membrane in both solid gel (SG) and liquid crystalline (LC) phases. Temperature dependent fluorescence intensity studies of 1-naphthol and fluorescence anisotropy measurements of 1,6-diphenyl-1,3,5-hexatriene (DPH) have shown that above the CMC of FTY720, the SG to LC main phase transition temperature (T(M)) of the lipid bilayer membrane decreases from 23 °C to 21 °C in the aqueous medium.
RSC Advances | 2014
Arun Kumar Padhy; Ashok Kumar Mishra; Monalisa Mohapatra; Avik Kumar Pati; Sasmita Mishra
Excited state intramolecular proton transfer (ESIPT) plays an important role in biological systems and has also recently found applications in electronic devices such as transducers, switches etc. In this paper we report the synthesis and solid state photochromic behavior of 2-(2-(3-nitrophenyl)-4,5-diphenyl-1H-imidazol-1-yloxy)-1-phenylethanone (II) due to ESIPT. Compound II exhibits yellow color in dark and red color in light, with the yellow form attributed to the keto derivative and the red form assigned to its enol derivative The color change in the presence of light is thus attributed to the keto–enol tautomerism through ESIPT. The color change from yellow to red is a photochemical process which thermally decays to the yellow form in the dark. The solid state stability of the enol form upon phototautomerization of the keto form is a noteworthy phenomenon, and its stability has been substantiated by our experimental findings. In the solution state, the yellow form (keto) is stable in chloroform while the red form (enol) is stable in DMSO. Theoretical calculations have been performed to understand the geometries and electronic transitions of the keto and enol forms. In addition, ground and excited state equilibrium constants for the keto–enol tautomerism were calculated.
Proceedings of SPIE | 2012
Monalisa Mohapatra; Ashok Kumar Mishra
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (≤ 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
Physical Chemistry Chemical Physics | 2014
H. Surya Prakash Rao; Avinash Desai; Ivy Sarkar; Monalisa Mohapatra; Ashok Kumar Mishra
Photochemical and Photobiological Sciences | 2009
Monalisa Mohapatra; Usharani Subuddhi; Ashok Kumar Mishra