Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mondira Kundu is active.

Publication


Featured researches published by Mondira Kundu.


Nature Cell Biology | 2011

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

Joungmok Kim; Mondira Kundu; Benoit Viollet; Kun-Liang Guan

Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.


Science | 2011

Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy

Daniel F. Egan; David B. Shackelford; Maria M. Mihaylova; Sara Gelino; Rebecca A. Kohnz; William Mair; Debbie S. Vasquez; Aashish Joshi; Dana M. Gwinn; Rebecca Taylor; John M. Asara; James A.J. Fitzpatrick; Andrew Dillin; Benoit Viollet; Mondira Kundu; Malene Hansen; Reuben J. Shaw

A protein kinase links energy stores to control of autophagy. Adenosine monophosphate–activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.


Molecular Biology of the Cell | 2009

ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery

Chang Hwa Jung; Chang Bong Jun; Seung Hyun Ro; Young Mi Kim; Neil Michael Otto; Jing Cao; Mondira Kundu; Do Hyung Kim

Autophagy, the starvation-induced degradation of bulky cytosolic components, is up-regulated in mammalian cells when nutrient supplies are limited. Although mammalian target of rapamycin (mTOR) is known as the key regulator of autophagy induction, the mechanism by which mTOR regulates autophagy has remained elusive. Here, we identify that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2. The mammalian Atg13 binds both ULK1 and ULK2 and mediates the interaction of the ULK proteins with FIP200. The binding of Atg13 stabilizes and activates ULK and facilitates the phosphorylation of FIP200 by ULK, whereas knockdown of Atg13 inhibits autophagosome formation. Inhibition of mTOR by rapamycin or leucine deprivation, the conditions that induce autophagy, leads to dephosphorylation of ULK1, ULK2, and Atg13 and activates ULK to phosphorylate FIP200. These findings demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2007

NIX is required for programmed mitochondrial clearance during reticulocyte maturation

Rachel L. Schweers; Ji Zhang; Mindy S. Randall; Melanie R. Loyd; Weimin Li; Frank C. Dorsey; Mondira Kundu; Joseph T. Opferman; John L. Cleveland; Jeffery L. Miller; Paul A. Ney

The regulated clearance of mitochondria is a well recognized but poorly understood aspect of cellular homeostasis, and defects in this process have been linked to aging, degenerative diseases, and cancer. Mitochondria are recycled through an autophagy-related process, and reticulocytes, which completely eliminate their mitochondria during maturation, provide a physiological model to study this phenomenon. Here, we show that mitochondrial clearance in reticulocytes requires the BCL2-related protein NIX (BNIP3L). Mitochondrial clearance does not require BAX, BAK, BCL-XL, BIM, or PUMA, indicating that NIX does not function through established proapoptotic pathways. Similarly, NIX is not required for the induction of autophagy during terminal erythroid differentiation. NIX is required for the selective elimination of mitochondria, however, because mitochondrial clearance, in the absence of NIX, is arrested at the stage of mitochondrial incorporation into autophagosomes and autophagosome maturation. These results yield insight into the mechanism of mitochondrial clearance in higher eukaryotes. Furthermore, they show a BAX- and BAK-independent role for a BCL2-related protein in development.


Blood | 2008

Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation.

Mondira Kundu; Tullia Lindsten; Chia Ying Yang; Junmin Wu; Fangping Zhao; Ji Zhang; Mary A. Selak; Paul A. Ney; Craig B. Thompson

Production of a red blood cells hemoglobin depends on mitochondrial heme synthesis. However, mature red blood cells are devoid of mitochondria and rely on glycolysis for ATP production. The molecular basis for the selective elimination of mitochondria from mature red blood cells remains controversial. Recent evidence suggests that clearance of both mitochondria and ribosomes, which occurs in reticulocytes following nuclear extrusion, depends on autophagy. Here, we demonstrate that Ulk1, a serine threonine kinase with homology to yeast atg1p, is a critical regulator of mitochondrial and ribosomal clearance during the final stages of erythroid maturation. However, in contrast to the core autophagy genes such as atg5 and atg7, expression of ulk1 is not essential for induction of macroautophagy in response to nutrient deprivation or for survival of newborn mice. Together, these data suggest that the ATG1 homologue, Ulk1, is a component of the selective autophagy machinery that leads to the elimination of organelles in erythroid cells rather that an essential mechanistic component of autophagy.


Nature Immunology | 2013

Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection

Christopher Lupfer; Paul G. Thomas; Paras K. Anand; Peter Vogel; Jennifer Martinez; Gonghua Huang; Maggie Green; Mondira Kundu; Hongbo Chi; Ramnik J. Xavier; Douglas R. Green; Mohamed Lamkanfi; Charles A. Dinarello; Peter C. Doherty; Thirumala-Devi Kanneganti

NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2−/− and Ripk2−/− mice are hypersusceptible to infection with influenza A virus. Ripk2−/− cells exhibited defective autophagy of mitochondria (mitophagy), leading to enhanced mitochondrial production of superoxide and accumulation of damaged mitochondria, which resulted in greater activation of the NLRP3 inflammasome and production of IL-18. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1−/− cells exhibited enhanced mitochondrial production of superoxide and activation of caspase-1. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating activation of the NLRP3 inflammasome and production of IL-18 via ULK1-dependent mitophagy.


Blood | 2009

Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation.

Ji Zhang; Mindy S. Randall; Melanie R. Loyd; Frank C. Dorsey; Mondira Kundu; John L. Cleveland; Paul A. Ney

Mitochondrial clearance is a well recognized but poorly understood biologic process, and reticulocytes, which undergo programmed mitochondrial clearance, provide a useful model to study this phenomenon. At the ultrastructural level, mitochondrial clearance resembles an autophagy-related process; however, the role of autophagy in mitochondrial clearance has not been established. Here we provide genetic evidence that autophagy pathways, initially identified in yeast, are involved in mitochondrial clearance from reticulocytes. Atg7 is an autophagy protein and an E1-like enzyme, which is required for the activity of dual ubiquitin-like conjugation pathways. Atg7 is required for the conjugation of Atg12 to Atg5, and Atg8 to phosphatidylethanolamine (PE), and is essential for autophagosome formation. In the absence of Atg7, mitochondrial clearance from reticulocytes is diminished but not completely blocked. Mammalian homologs of Atg8 are unmodified in Atg7(-/-) erythroid cells, indicating that canonical autophagy pathways are inactive. Thus, mitochondrial clearance is regulated by both autophagy-dependent and -independent mechanisms. In addition, mitochondria, which depolarize in wild-type cells before elimination, remain polarized in Atg7(-/-) reticulocytes in culture. This suggests that mitochondrial depolarization is a consequence rather than a cause of autophagosome formation in reticulocytes.


Molecular Cell | 2011

Hsp90-Cdc37 Chaperone Complex Regulates Ulk1- and Atg13-Mediated Mitophagy

Joung Hyuck Joo; Frank C. Dorsey; Aashish Joshi; Kristin M. Hennessy-Walters; Kristie L. Rose; Kelly McCastlain; Ji Zhang; Rekha Iyengar; Chang Hwa Jung; Der-Fen Suen; Meredith A. Steeves; Chia Ying Yang; Stephanie M. Prater; Do Hyung Kim; Craig B. Thompson; Richard J. Youle; Paul A. Ney; John L. Cleveland; Mondira Kundu

Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.


PLOS Genetics | 2015

Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

Junghyun Lim; M. Lenard Lachenmayer; Shuai Wu; Wenchao Liu; Mondira Kundu; Rong Wang; Masaaki Komatsu; Young Jun Oh; Yanxiang Zhao; Zhenyu Yue

Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease.


Journal of Clinical Investigation | 2013

Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia

Maria E. Figueroa; Shann Ching Chen; Anna Andersson; Letha A. Phillips; Yushan Li; Jason Sotzen; Mondira Kundu; James R. Downing; Ari Melnick; Charles G. Mullighan

Acute lymphoblastic leukemia (ALL) is the commonest childhood malignancy and is characterized by recurring structural genetic alterations. Previous studies of DNA methylation suggest epigenetic alterations may also be important, but an integrated genome-wide analysis of genetic and epigenetic alterations in ALL has not been performed. We analyzed 137 B-lineage and 30 T-lineage childhood ALL cases using microarray analysis of DNA copy number alterations and gene expression, and genome-wide cytosine methylation profiling using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. We found that the different genetic subtypes of ALL are characterized by distinct DNA methylation signatures that exhibit significant correlation with gene expression profiles. We also identified an epigenetic signature common to all cases, with correlation to gene expression in 65% of these genes, suggesting that a core set of epigenetically deregulated genes is central to the initiation or maintenance of lymphoid transformation. Finally, we identified aberrant methylation in multiple genes also targeted by recurring DNA copy number alterations in ALL, suggesting that these genes are inactivated far more frequently than suggested by structural genomic analyses alone. Together, these results demonstrate subtype- and disease-specific alterations in cytosine methylation in ALL that influence transcriptional activity, and are likely to exert a key role in leukemogenesis.

Collaboration


Dive into the Mondira Kundu's collaboration.

Top Co-Authors

Avatar

Ji Zhang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joung Hyuck Joo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Aashish Joshi

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Bo Wang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Green

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul A. Ney

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Rekha Iyengar

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher Wright

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Craig B. Thompson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

P. Paul Liu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge