Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Aasrum is active.

Publication


Featured researches published by Monica Aasrum.


Journal of Cellular Physiology | 2008

Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes.

Olav F. Dajani; Kristin Meisdalen; Tormod Kyrre Guren; Monica Aasrum; Ingun H Tveteraas; Peggy Lilleby; G. Hege Thoresen; Dagny Sandnes; Thoralf Christoffersen

Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR‐independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2‐stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor‐sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF‐stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2‐treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part Gi protein‐mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways. J. Cell. Physiol. 214: 371–380, 2008.


BMC Cancer | 2011

Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

Kristin Meisdalen Müller; Ingun H Tveteraas; Monica Aasrum; John Ødegård; Mona Dawood; Olav F. Dajani; Thoralf Christoffersen; Dagny Sandnes

BackgroundNeurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells.MethodsColon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting.ResultsNeurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells.ConclusionsWhile acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK and stimulation of DNA synthesis was PKC-dependent, whereas activation of the PI3K/Akt pathway was mediated by stimulation of metalloproteinases and subsequent transactivation of the EGFR. Thus, the data show that the signalling mechanisms mediating the effects of neurotensin involve multiple pathways and are cell-dependent.


Journal of Oral Pathology & Medicine | 2012

Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt.

Ingvild J. Brusevold; Monica Aasrum; Magne Bryne; Thoralf Christoffersen

BACKGROUND Cell migration is a necessary part of malignant invasiveness. Oral squamous cell carcinomas (OSCC) have a great tendency for local invasive growth. We have investigated signalling pathways involved in cell migration induced by epidermal growth factor (EGF) and hepatocyte growth factor (HGF) in OSCC cells and examined the effects of various experimental and clinically approved anti-tumour signal inhibitors on the migratory activity. METHODS Migration was studied in three human OSCC cell lines, using a scratch wound assay in vitro and time-lapse cinematography. Specific phosphorylation of signalling proteins was assessed by Western blotting. RESULTS In the E10 cell line, EGF and HGF induced phosphorylation of EGF receptor (EGFR) and Met, respectively, phosphorylation of ERK1/2, p38 and Akt, and dose-dependent activation of cell migration. Addition of the EGFR-specific inhibitors cetuximab (antibody) or gefitinib (tyrosine kinase blocker) abolished cell migration elicited by EGF. Similarly, a Met kinase inhibitor (SU11274) blocked HGF-induced cell migration. Furthermore, when three cell lines were treated with blockers of the MEK/ERK, p38 or the PI-3 kinase/Akt pathways, the migratory response to both EGF and HGF was inhibited, but to varying degrees. Notably, in E10 and D12 cells, HGF-induced migration was particularly sensitive to PI-3 K-inhibition, while in C12 cells, both HGF- and EGF-induced migration were highly sensitive to p38-blockade. CONCLUSION The results demonstrate that the MEK/ERK, p38 and PI-3 kinase pathways are all involved in mediating the increased migration in OSCC cell lines induced by EGF and HGF, but their relative importance and the effects of specific signal inhibitors differ.


Journal of Experimental & Clinical Cancer Research | 2012

Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells

Ingun H Tveteraas; Kristin Meisdalen Müller; Monica Aasrum; John Ødegård; Olav F. Dajani; Tormod Kyrre Guren; Dagny Sandnes; Thoralf Christoffersen

BackgroundIt is important to understand the mechanisms by which the cells integrate signals from different receptors. Several lines of evidence implicate epidermal growth factor (EGF) receptor (EGFR) in the pathophysiology of hepatocarcinomas. Data also suggest a role of prostaglandins in some of these tumours, through their receptors of the G protein-coupled receptor (GPCR) family. In this study we have investigated mechanisms of interaction between signalling from prostaglandin receptors and EGFR in hepatocarcinoma cells.MethodsThe rat hepatocarcinoma cell line MH1C1 and normal rat hepatocytes in primary culture were stimulated with EGF or prostaglandin E2 (PGE2) and in some experiments also PGF2α. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA, phosphorylation of proteins in signalling pathways was assessed by Western blotting, mRNA expression of prostaglandin receptors was determined using qRT-PCR, accumulation of inositol phosphates was measured by incorporation of radiolabelled inositol, and cAMP was determined by radioimmunoassay.ResultsIn the MH1C1 hepatocarcinoma cells, stimulation with PGE2 or PGF2α caused phosphorylation of the EGFR, Akt, and ERK, which could be blocked by the EGFR tyrosine kinase inhibitor gefitinib. This did not occur in primary hepatocytes. qRT-PCR revealed expression of EP1, EP4, and FP receptor mRNA in MH1C1 cells. PGE2 stimulated accumulation of inositol phosphates but not cAMP in these cells, suggesting signalling via PLCβ. While pretreatment with EP1 and EP4 receptor antagonists did not inhibit the effect of PGE2, pretreatment with an FP receptor antagonist blocked the phosphorylation of EGFR, Akt and ERK. Further studies suggested that the PGE2-induced signal was mediated via Ca2+ release and not PKC activation, and that it proceeded through Src and shedding of membrane-bound EGFR ligand precursors by proteinases of the ADAM family.ConclusionThe results indicate that in MH1C1 cells, unlike normal hepatocytes, PGE2 activates the MEK/ERK and PI3K/Akt pathways by transactivation of the EGFR, thus diversifying the GPCR-mediated signal. The data also suggest that the underlying mechanisms in these cells involve FP receptors, PLCβ, Ca2+, Src, and proteinase-mediated release of membrane-associated EGFR ligand(s).


BMC Cancer | 2014

Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells

Ingvild J. Brusevold; Ingun H Tveteraas; Monica Aasrum; John Ødegård; Dagny Sandnes; Thoralf Christoffersen

BackgroundOral squamous cell carcinoma is an aggressive neoplasm with serious morbidity and mortality, which typically spreads through local invasive growth. Lysophosphatidic acid (LPA) is involved in a number of biological processes, and may have a role in cancer cell migration and invasiveness. LPA is present in most tissues and can activate cells through six different LPA receptors (LPAR1-6). Although LPA is predominantly promigratory, some of the receptors may have antimigratory effects in certain cells. The signalling mechanisms of LPA are not fully understood, and in oral carcinoma cells the specific receptors and pathways involved in LPA-stimulated migration are unknown.MethodsThe oral carcinoma cell lines E10, SCC-9, and D2 were investigated. Cell migration was studied in a scratch wound assay, and invasion was demonstrated in organotypic three dimensional co-cultures. Protein and mRNA expression of LPA receptors was studied with Western blotting and qRT-PCR. Activation of signalling proteins was examined with Western blotting and isoelectric focusing, and signalling mechanisms were further explored using pharmacological agents and siRNA directed at specific receptors and pathways.ResultsLPA stimulated cell migration in the two oral carcinoma cell lines E10 and SCC-9, but was slightly inhibitory in D2. The receptor expression profile and the effects of specific pharmacological antagonist and agonists indicated that LPA-stimulated cell migration was mediated through LPAR3 in E10 and SCC-9. Furthermore, in both these cell lines, the stimulation by LPA was dependent on PKC activity. However, while LPA induced transactivation of EGFR and the stimulated migration was blocked by EGFR inhibitors in E10 cells, LPA did not induce EGFR transactivation in SCC-9 cells. In D2 cells, LPA induced EGFR transactivation, but this was associated with slowing of a very high inherent migration rate in these cells.ConclusionThe results demonstrate LPA-stimulated migration in oral carcinoma cells through LPAR3, mediated further by PKC, which acts either in concert with or independently of EGFR transactivation.


Tumor Biology | 2016

Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells

Ingun H Tveteraas; Monica Aasrum; Ingvild J. Brusevold; John Ødegård; Thoralf Christoffersen; Dagny Sandnes

Lysophosphatidic acid (LPA) is a small glycerophospholipid ubiquitously present in tissues and plasma. It acts through receptors belonging to the G-protein-coupled receptor (GPCR) family, is involved in several biological processes, and is strongly implicated in different cancers. In this paper, we have investigated the effects of LPA on DNA synthesis and migration in a panel of pancreatic and colon cancer cells, with particular focus on the involvement of the epidermal growth factor (EGF) receptor (EGFR) in LPA-induced signaling. LPA stimulated DNA synthesis and/or migration in all the cell lines included in this study. In five of the six cell lines, LPA induced phosphorylation of the EGFR, and the effects on EGFR and Akt, and in some of the cells also ERK, were sensitive to the EGFR tyrosine kinase inhibitor gefitinib, strongly suggesting LPA-induced EGFR transactivation in these cells. In contrast, in one of the pancreatic carcinoma cell lines (Panc-1), we found no evidence of transactivation of the EGFR. In the pancreatic carcinoma cell lines where transactivation took place (BxPC3, AsPC1, HPAFII), gefitinib reduced LPA-induced DNA synthesis and/or migration. However, we also found evidence of transactivation in the two colon carcinoma cell lines (HT29, HCT116) although gefitinib did not inhibit LPA-induced DNA synthesis or migration in these cells. Taken together, the data indicate that in many gastrointestinal carcinoma cells, LPA uses EGFR transactivation as a mechanism when exerting such effects as stimulation of cell proliferation and migration, but EGFR-independent pathways may be involved instead of, or in concerted action with, the EGFR transactivation.


Neoplasia | 2016

Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

Vegard Tjomsland; Eva Pomianowska; Monica Aasrum; Dagny Sandnes; Caroline S. Verbeke; Ivar P. Gladhaug

Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC) is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs). PSCs interact with cancer cells through various factors, including transforming growth factor (TGF)β and interleukin (IL)-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP) profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.


BMC Cancer | 2014

Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma

Ewa Pomianowska; Dagny Sandnes; Krzysztof Grzyb; Aasa R. Schjølberg; Monica Aasrum; Ingun H Tveteraas; Vegard Tjomsland; Thoralf Christoffersen; Ivar P. Gladhaug

BackgroundSeveral studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis.MethodsImmunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [3H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [3H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR.ResultsImmunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis.ConclusionsThe present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors.


Oncotarget | 2017

Functional heterogeneity in tumor-derived human pancreatic stellate cells: Differential expression of HGF and implications for mitogenic signaling and migration in pancreatic cancer cells

Vegard Tjomsland; Monica Aasrum; Thoralf Christoffersen; Ivar P. Gladhaug

The pancreatic stellate cell (PSC) is the principal cell type of the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC). PSCs interact with cancer cells and influence the progression of the disease through a complex network of signaling molecules including hepatocyte growth factor (HGF). Functional heterogeneity of PSCs within a tumor might conceivably influence tumor progression. We investigated PSC populations isolated from different human PDACs and examined the effects of PSC-conditioned medium on BxPC-3 and AsPC-1 pancreatic cancer cells. The different PSC populations exhibited a wide range of variation (120−3,000 pg/ml) in their ability to secrete HGF. Media from high-HGF-producing PSCs stimulated phosphorylation of Met, Gab1, and ERK in the cancer cells and induced increases in DNA synthesis and migration which were blocked by the Met inhibitor SU11274, indicating a role of HGF as a mediator. HGF levels produced by PSCs and the effects of PSC media on the cancer cells were increased by IL-1α and inhibited by TGFβ. The functional heterogeneity of PSCs in terms of HGF-mediated tumor-stroma interactions suggests that inhibition of the HGF pathway as a novel treatment approach in PDAC might have different effects in different subsets of patients.The pancreatic stellate cell (PSC) is the principal cell type of the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC). PSCs interact with cancer cells and influence the progression of the disease through a complex network of signaling molecules including hepatocyte growth factor (HGF). Functional heterogeneity of PSCs within a tumor might conceivably influence tumor progression. We investigated PSC populations isolated from different human PDACs and examined the effects of PSC-conditioned medium on BxPC-3 and AsPC-1 pancreatic cancer cells. The different PSC populations exhibited a wide range of variation (120-3,000 pg/ml) in their ability to secrete HGF. Media from high-HGF-producing PSCs stimulated phosphorylation of Met, Gab1, and ERK in the cancer cells and induced increases in DNA synthesis and migration which were blocked by the Met inhibitor SU11274, indicating a role of HGF as a mediator. HGF levels produced by PSCs and the effects of PSC media on the cancer cells were increased by IL-1α and inhibited by TGFβ. The functional heterogeneity of PSCs in terms of HGF-mediated tumor-stroma interactions suggests that inhibition of the HGF pathway as a novel treatment approach in PDAC might have different effects in different subsets of patients.


Journal of Experimental & Clinical Cancer Research | 2016

The TGFβ-SMAD3 pathway inhibits IL-1α induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration.

Vegard Tjomsland; Dagny Sandnes; Ewa Pomianowska; Smiljana Torbica Cizmovic; Monica Aasrum; Ingvild J. Brusevold; Thoralf Christoffersen; Ivar P. Gladhaug

BackgroundThe most abundant cells in the extensive desmoplastic stroma of pancreatic adenocarcinomas are the pancreatic stellate cells, which interact with the carcinoma cells and strongly influence the progression of the cancer. Tumor stroma interactions induced by IL-1α/IL-1R1 signaling have been shown to be involved in pancreatic cancer cell migration. TGFβ and its receptors are overexpressed in pancreatic adenocarcinomas. We aimed at exploring TGFβ and IL-1α signaling and cross-talk in the stellate cell cancer cell interactions regulating pancreatic adenocarcinoma cell migration.MethodsHuman pancreatic stellate cells were isolated from surgically resected pancreatic adenocarcinomas and cultured in the presence of TGFβ or pancreatic adenocarcinoma cell lines. The effects of TGFβ were blocked by inhibitors or amplified by silencing the endogenous inhibitor of SMAD signaling, SMAD7. Pancreatic stellate cell responses to IL-1α or to IL-1α-expressing pancreatic adenocarcinoma cells (BxPC-3) were characterized by their ability to stimulate migration of cancer cells in a 2D migration model.ResultsIn pancreatic stellate cells, IL-1R1 expression was found to be down-regulated by TGFβ and blocking of TGFβ signaling re-established the expression. Endogenous inhibition of TGFβ signaling by SMAD7 was found to correlate with the levels of IL-1R1, indicating a regulatory role of SMAD7 in IL-1R1 expression. Pancreatic stellate cells cultured in the presence of IL-1α or in co-cultures with BxPC-3 cells enhanced the migration of cancer cells. This effect was blocked after treatment of the pancreatic stellate cells with TGFβ. Silencing of stellate cell expression of SMAD7 was found to suppress the levels of IL-1R1 and reduce the stimulatory effects of IL-1α, thus inhibiting the capacity of pancreatic stellate cells to induce cancer cell migration.ConclusionsTGFβ signaling suppressed IL-1α mediated pancreatic stellate cell induced carcinoma cell migration. Depletion of SMAD7 upregulated the effects of TGFβ and reduced the expression of IL-1R1, leading to inhibition of IL-1α induced stellate cell enhancement of carcinoma cell migration. SMAD7 might represent a target for inhibition of IL-1α induced tumor stroma interactions.

Collaboration


Dive into the Monica Aasrum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Ødegård

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge