Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Borghi is active.

Publication


Featured researches published by Monica Borghi.


Nature Communications | 2016

IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

Rossana G. Iannitti; Valerio Napolioni; Vasilis Oikonomou; Antonella De Luca; Claudia Galosi; Marilena Pariano; Cristina Massi-Benedetti; Monica Borghi; Matteo Puccetti; Vincenzina Lucidi; Carla Colombo; Ersilia Fiscarelli; Cornelia Lass-Flörl; Fabio Majo; Lisa Cariani; Maria Chiara Russo; Luigi Porcaro; Gabriella Ricciotti; Helmut Ellemunter; Luigi Ratclif; Fernando Maria de Benedictis; Vincenzo Nicola Talesa; Charles A. Dinarello; Frank L. van de Veerdonk; Luigina Romani

Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.


Nature Communications | 2017

A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis

Silvia Moretti; Giorgia Renga; Vasilis Oikonomou; Claudia Galosi; Marilena Pariano; Rossana G. Iannitti; Monica Borghi; Matteo Puccetti; Marco De Zuani; Carlo Pucillo; Giuseppe Paolicelli; Teresa Zelante; Jean-Christophe Renauld; Oxana Bereshchenko; Paolo Sportoletti; Vincenzina Lucidi; Maria Chiara Russo; Carla Colombo; Ersilia Fiscarelli; Cornelia Lass-Flörl; Fabio Majo; Gabriella Ricciotti; Helmut Ellemunter; Luigi Ratclif; Vincenzo Nicola Talesa; Valerio Napolioni; Luigina Romani

T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF.


Nature Medicine | 2017

Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis

Luigina Romani; Vasilis Oikonomou; Silvia Moretti; Rossana G. Iannitti; Maria Cristina D'Adamo; Valeria R Villella; Marilena Pariano; Luigi Sforna; Monica Borghi; Marina Maria Bellet; Francesca Fallarino; Maria Teresa Pallotta; Giuseppe Servillo; Eleonora Ferrari; Paolo Puccetti; Guido Kroemer; Mauro Pessia; Luigi Maiuri; Allan L. Goldstein; Enrico Garaci

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.


Cell Host & Microbe | 2015

Pathogenic NLRP3 Inflammasome Activity during Candida Infection Is Negatively Regulated by IL-22 via Activation of NLRC4 and IL-1Ra

Monica Borghi; Antonella De Luca; Matteo Puccetti; Martin Jaeger; Antonella Mencacci; Vasilis Oikonomou; Marilena Pariano; Cecilia Garlanda; Silvia Moretti; Andrea Bartoli; Jack D. Sobel; Frank L. van de Veerdonk; Charles A. Dinarello; Mihai G. Netea; Luigina Romani

Candida albicans is a well-tolerated resident of human mucosal tissues. This implies that host defense mechanisms cooperate to limit inflammation while controlling fungal burden. The cytokine IL-22 and inflammasomes are essential components of the mucosal responses to C. albicans. How these components cooperate to mediate the balance of inflammation and host defense is not explored. We find that NLRP3 inflammasome activation promotes neutrophil recruitment and inflammation during infection and that this activity is counteracted by IL-22. Mechanistically, IL-22 activated NLRC4 for sustained production of the IL-1 receptor antagonist IL-1Ra, which restrained NLRP3 activity. Symptomatic infection in mice and humans occurred under conditions of IL-1Ra deficiency and was rescued in mice by replacement therapy with the recombinant IL-1Ra anakinra. Thus, pathogenic inflammasome activity during Candida infection is negatively regulated by the IL-22/NLRC4/IL-1Ra axis. Our findings offer insights into the pathogenesis of C. albicans and suggest therapeutic avenues for candidiasis.


American Journal of Respiratory and Critical Care Medicine | 2013

Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis

Rossana G. Iannitti; Andrea Casagrande; Antonella De Luca; Cristina Cunha; Guglielmo Sorci; Francesca Riuzzi; Monica Borghi; Claudia Galosi; Cristina Massi-Benedetti; Tim D. Oury; Lisa Cariani; Maria Chiara Russo; Luigi Porcaro; Carla Colombo; Fabio Majo; Vincenzina Lucidi; Ersilia Fiscarelli; Gabriella Ricciotti; Cornelia Lass-Flörl; Luigi Ratclif; Antonella Esposito; Fernando Maria de Benedictis; Rosario Donato; Agostinho Carvalho; Luigina Romani

RATIONALE Hypoxia regulates the inflammatory-antiinflammatory balance by the receptor for advanced glycation end products (RAGE), a versatile sensor of damage-associated molecular patterns. The multiligand nature of RAGE places this receptor in the midst of chronic inflammatory diseases. OBJECTIVES To characterize the impact of the hypoxia-RAGE pathway on pathogenic airway inflammation preventing effective pathogen clearance in cystic fibrosis (CF) and elucidate the potential role of this danger signal in pathogenesis and therapy of lung inflammation. METHODS We used in vivo and in vitro models to study the impact of hypoxia on RAGE expression and activity in human and murine CF, the nature of the RAGE ligand, and the impact of RAGE on lung inflammation and antimicrobial resistance in fungal and bacterial pneumonia. MEASUREMENTS AND MAIN RESULTS Sustained expression of RAGE and its ligand S100B was observed in murine lung and human epithelial cells and exerted a proximal role in promoting inflammation in murine and human CF, as revealed by functional studies and analysis of the genetic variability of AGER in patients with CF. Both hypoxia and infections contributed to the sustained activation of the S100B-RAGE pathway, being RAGE up-regulated by hypoxia and S100B by infection by Toll-like receptors. Inhibiting the RAGE pathway in vivo with soluble (s) RAGE reduced pathogen load and inflammation in experimental CF, whereas sRAGE production was defective in patients with CF. CONCLUSIONS A causal link between hyperactivation of RAGE and inflammation in CF has been observed, such that targeting pathogenic inflammation alleviated inflammation in CF and measurement of sRAGE levels could be a useful biomarker for RAGE-dependent inflammation in patients with CF.


Frontiers in Immunology | 2014

Antifungal Th Immunity: Growing up in Family.

Monica Borghi; Giorgia Renga; Matteo Puccetti; Vasileios Oikonomou; Melissa Palmieri; Claudia Galosi; Andrea Bartoli; Luigina Romani

Fungal diseases represent an important paradigm in immunology since they can result from either the lack of recognition or over-activation of the inflammatory response. Current understanding of the pathophysiology underlying fungal infections and diseases highlights the multiple cell populations and cell-signaling pathways involved in these conditions. A systems biology approach that integrates investigations of immunity at the systems-level is required to generate novel insights into this complexity and to decipher the dynamics of the host–fungus interaction. It is becoming clear that a three-way interaction between the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan metabolism helps support this interaction, being exploited by the mammalian host and commensals to increase fitness in response to fungi via resistance and tolerance mechanisms of antifungal immunity. The cellular and molecular mechanisms that provide immune homeostasis with the fungal biota and its possible rupture in fungal infections and diseases will be discussed within the expanding role of antifungal Th cell responses.


Cell Host & Microbe | 2016

Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-γ via DAPK1

Vasilis Oikonomou; Silvia Moretti; Giorgia Renga; Claudia Galosi; Monica Borghi; Marilena Pariano; Matteo Puccetti; Carlo Alberto Palmerini; Lucia Amico; Alessandra Carotti; Lucia Prezioso; Angelica Spolzino; Andrea Finocchi; Paolo Rossi; Andrea Velardi; Franco Aversa; Valerio Napolioni; Luigina Romani

Summary Defects in a form of noncanonical autophagy, known as LC3-associated phagocytosis (LAP), lead to increased inflammatory pathology during fungal infection. Although LAP contributes to fungal degradation, the molecular mechanisms underlying LAP-mediated modulation of inflammation are unknown. We describe a mechanism by which inflammation is regulated during LAP through the death-associated protein kinase 1 (DAPK1). The ATF6/C/EBP-β/DAPK1 axis activated by IFN-γ not only mediates LAP to Aspergillus fumigatus but also concomitantly inhibits Nod-like receptor protein 3 (NLRP3) activation and restrains pathogenic inflammation. In mouse models and patient samples of chronic granulomatous disease, which exhibit defective autophagy and increased inflammasome activity, IFN-γ restores reduced DAPK1 activity and dampens fungal growth. Additionally, in a cohort of hematopoietic stem cell-transplanted patients, a genetic DAPK1 deficiency is associated with increased inflammation and heightened aspergillosis susceptibility. Thus, DAPK1 is a potential drugable player in regulating the inflammatory response during fungal clearance initiated by IFN-γ.


Journal of Dental Research | 2015

Fine-tuning of Th17 Cytokines in Periodontal Disease by IL-10

Silvia Moretti; L. Bartolommei; Claudia Galosi; Giorgia Renga; Vasileios Oikonomou; F. Zamparini; G. Ricci; Monica Borghi; Matteo Puccetti; D. Piobbico; Stefano Eramo; C. Conti; G. Lomurno; Andrea Bartoli; Valerio Napolioni; Luigina Romani

Periodontitis (PD) is a chronic disease caused by the host inflammatory response to bacteria colonizing the oral cavity. In addition to tolerance to oral microbiome, a fine-tuned balance of IL-10 levels is critical to efficiently mount antimicrobial resistance without causing immunopathology. Clinical and animal studies support that adaptive T-helper (Th) cytokines are involved in the pathogenesis of alveolar bone destruction in PD. However, it remains unclear what type of Th response is related to human PD progression and what role IL-10 has on this process. We addressed the contribution of IL-10 in limiting Th1 and Th17 inflammatory response in murine and human PD. Through a combination of basic and translational approaches involving selected cytokine-deficient mice as well as human genetic epidemiology, our results demonstrate the requirement for IL-10 in fine-tuning the levels of Th17 (IL-17A and IL-17F) cytokines in experimental and human PD. Of novelty, we found that IL-17F correlated with protection in murine and human PD and was positively regulated by IL-10. To our knowledge, this is the first demonstration of the protective role for IL-17F in PD, its positive regulation by IL-10, and the potential differential role for IL-17A and IL-17F in periodontal disease.


Cell Reports | 2017

The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways

Antonella De Luca; Marilena Pariano; Barbara Cellini; Claudio Costantini; Valeria Rachela Villella; Shyam Sushama Jose; Melissa Palmieri; Monica Borghi; Claudia Galosi; Giuseppe Paolicelli; Luigi Maiuri; Jan Fric; Teresa Zelante

The interleukin 17 (IL-17) cytokine and receptor family is central to antimicrobial resistance and inflammation in the lung. Mice lacking IL-17A, IL-17F, or the IL-17RA subunit were compared with wild-type mice for susceptibility to airway inflammation in models of infection and allergy. Signaling through IL-17RA was required for efficient microbial clearance and prevention of allergy; in the absence of IL-17RA, signaling through IL-17RC on epithelial cells, predominantly by IL-17F, significantly exacerbated lower airway Aspergillus or Pseudomonas infection and allergic airway inflammation. In contrast, following infection with the upper respiratory pathogen Staphylococcus aureus, the IL-17F/IL-17RC axis mediated protection. Thus, IL-17A and IL-17F exert distinct biological effects during pulmonary infection; the IL-17F/IL-17RC signaling axis has the potential to significantly worsen pathogen-associated inflammation of the lower respiratory tract in particular, and should be investigated further as a therapeutic target for treating pathological inflammation in the lung.


Cell Reports | 2018

IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut

Giorgia Renga; Silvia Moretti; Vasilis Oikonomou; Monica Borghi; Teresa Zelante; Giuseppe Paolicelli; Claudio Costantini; Marco De Zuani; Valeria Rachela Villella; Valeria Raia; Rachele Del Sordo; Andrea Bartoli; Monia Baldoni; Jean-Christophe Renauld; Angelo Sidoni; Enrico Garaci; Luigi Maiuri; Carlo Pucillo; Luigina Romani

Summary Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut.

Collaboration


Dive into the Monica Borghi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge