Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Coll is active.

Publication


Featured researches published by Monica Coll.


Seizure-european Journal of Epilepsy | 2015

Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant

Coloma Tiron; Oscar Campuzano; Alexandra Pérez-Serra; Irene Mademont; Monica Coll; Catarina Allegue; Anna Iglesias; Sara Partemi; Pasquale Striano; Antonio Oliva; Ramon Brugada

PURPOSE Ion channels are expressed both in the heart and in the brain, being advocated as responsible for sudden unexpected death in epilepsy but few pathogenic mutations have been identified. We aim to identify a novel gen associated with channelopathies and epilepsy in a family. METHODS We assessed a family showing epilepsy concomitant with LQTS. Index case showed prolonged QT interval. His father suffers of LQT and epilepsy. We performed a direct sequencing analysis of KCNQ1, KCNH2, KCNE1, KCNE2 and SCN5A genes. RESULTS We identified a non-synonymous heterozygous missense pathogenic mutation (p.L273F) in exon 6 of the KCNQ1 gene. All clinically affected relatives carried the same mutation. CONCLUSION We report, for a first time, a KCNQ1 mutation in a family suffering of both phenotypes, suggesting that KCNQ1 genetic variations may confer susceptibility for recurrent seizure activity increasing the risk or lead to sudden death.


PLOS ONE | 2015

Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome

Catarina Allegue; Monica Coll; Jesus Mates; Oscar Campuzano; Anna Iglesias; Beatriz Sobrino; Maria Brion; Jorge Amigo; Angel Carracedo; Pedro Brugada; Josep Brugada; Ramon Brugada

Background The use of next-generation sequencing enables a rapid analysis of many genes associated with sudden cardiac death in diseases like Brugada Syndrome. Genetic variation is identified and associated with 30–35% of cases of Brugada Syndrome, with nearly 20–25% attributable to variants in SCN5A, meaning many cases remain undiagnosed genetically. To evaluate the role of genetic variants in arrhythmogenic diseases and the utility of next-generation sequencing, we applied this technology to resequence 28 main genes associated with arrhythmogenic disorders. Materials and Methods A cohort of 45 clinically diagnosed Brugada Syndrome patients classified as SCN5A-negative was analyzed using next generation sequencing. Twenty-eight genes were resequenced: AKAP9, ANK2, CACNA1C, CACNB2, CASQ2, CAV3, DSC2, DSG2, DSP, GPD1L, HCN4, JUP, KCNE1, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNQ1, NOS1AP, PKP2, RYR2, SCN1B, SCN3B, SCN4B, SCN5A, SNTA1, and TMEM43. A total of 85 clinically evaluated relatives were also genetically analyzed to ascertain familial segregation. Results and Discussion Twenty-two patients carried 30 rare genetic variants in 12 genes, only 4 of which were previously associated with Brugada Syndrome. Neither insertion/deletion nor copy number variation were detected. We identified genetic variants in novel candidate genes potentially associated to Brugada Syndrome. These include: 4 genetic variations in AKAP9 including a de novo genetic variation in 3 positive cases; 5 genetic variations in ANK2 detected in 4 cases; variations in KCNJ2 together with CASQ2 in 1 case; genetic variations in RYR2, including a de novo genetic variation and desmosomal proteins encoding genes including DSG2, DSP and JUP, detected in 3 of the cases. Larger gene panels or whole exome sequencing should be considered to identify novel genes associated to Brugada Syndrome. However, application of approaches such as whole exome sequencing would difficult the interpretation for clinical purposes due to the large amount of data generated. The identification of these genetic variants opens new perspectives on the implications of genetic background in the arrhythmogenic substrate for research purposes. Conclusions As a paradigm for other arrhythmogenic diseases and for unexplained sudden death, our data show that clinical genetic diagnosis is justified in a family perspective for confirmation of genetic causality. In the era of personalized medicine using high-throughput tools, clinical decision-making is increasingly complex.


PLOS ONE | 2016

Natural and Undetermined Sudden Death: Value of Post-Mortem Genetic Investigation

Olallo Sanchez; Oscar Campuzano; Anna Fernández-Falgueras; Georgia Sarquella-Brugada; Sergi Cesar; Irene Mademont; Jesus Mates; Alexandra Pérez-Serra; Monica Coll; Ferran Picó; Anna Iglesias; Coloma Tiron; Catarina Allegue; Esther Carro; María Ángeles Gallego; Carles Ferrer-Costa; Narcís Bardalet; Juan Carlos Borondo; Albert Vingut; Elena Arbelo; Josep Brugada; Josep Castellà; Jordi Medallo; Ramon Brugada

Background Sudden unexplained death may be the first manifestation of an unknown inherited cardiac disease. Current genetic technologies may enable the unraveling of an etiology and the identification of relatives at risk. The aim of our study was to define the etiology of natural deaths, younger than 50 years of age, and to investigate whether genetic defects associated with cardiac diseases could provide a potential etiology for the unexplained cases. Methods and Findings Our cohort included a total of 789 consecutive cases (77.19% males) <50 years old (average 38.6±12.2 years old) who died suddenly from non-violent causes. A comprehensive autopsy was performed according to current forensic guidelines. During autopsy a cause of death was identified in most cases (81.1%), mainly due to cardiac alterations (56.87%). In unexplained cases, genetic analysis of the main genes associated with sudden cardiac death was performed using Next Generation Sequencing technology. Genetic analysis was performed in suspected inherited diseases (cardiomyopathy) and in unexplained death, with identification of potentially pathogenic variants in nearly 50% and 40% of samples, respectively. Conclusions Cardiac disease is the most important cause of sudden death, especially after the age of 40. Close to 10% of cases may remain unexplained after a complete autopsy investigation. Molecular autopsy may provide an explanation for a significant part of these unexplained cases. Identification of genetic variations enables genetic counseling and undertaking of preventive measures in relatives at risk.


Forensic Science International | 2014

Post-mortem genetic analysis in juvenile cases of sudden cardiac death

Oscar Campuzano; Olallo Sanchez-Molero; Catarina Allegue; Monica Coll; Irene Mademont-Soler; Elisabet Selga; Carles Ferrer-Costa; Jesus Mates; Anna Iglesias; Georgia Sarquella-Brugada; Sergi Cesar; Josep Brugada; Josep Castellà; Jordi Medallo; Ramon Brugada

BACKGROUND The reason behind a sudden death of a young individual remains unknown in up to 50% of postmortem cases. Pathogenic mutations in genes encoding heart proteins are known to cause sudden cardiac death. OBJECTIVE The aim of our study was to ascertain whether genetic alterations could provide an explanation for sudden cardiac death in a juvenile cohort with no-conclusive cause of death after comprehensive autopsy. METHODS Twenty-nine cases <15 years showing no-conclusive cause of death after a complete autopsy were studied. Genetic analysis of 7 main genes associated with sudden cardiac death was performed using Sanger technology in low quality DNA cases, while in good quality cases the analysis of 55 genes associated with sudden cardiac death was performed using Next Generation Sequencing technology. RESULTS Thirty-five genetic variants were identified in 12 cases (41.37%). Ten genetic/variants in genes encoding cardiac ion channels were identified in 8 cases (27.58%). We also identified 9 cases (31.03%) carrying 25 genetic variants in genes encoding structural cardiac proteins. Nine cases carried more than one genetic variation, 5 of them combining structural and non-structural genes. CONCLUSIONS Our study supports the inclusion of molecular autopsy in forensic routine protocols when no conclusive cause of death is identified. Around 40% of sudden cardiac death young cases carry a genetic variant that could provide an explanation for the cause of death. Because relatives could be at risk of sudden cardiac death, our data reinforce their need of clinical assessment and, if indicated, of genetic analysis.


Forensic Science International | 2014

The Role of clinical, genetic and segregation evaluation in sudden infant death

Oscar Campuzano; Catarina Allegue; Georgia Sarquella-Brugada; Monica Coll; Jesus Mates; Mireia Alcalde; Carles Ferrer-Costa; Anna Iglesias; Josep Brugada; Ramon Brugada

Sudden infant death syndrome (SIDS) is the leading cause of death in the first year of life. Several arrhythmogenic genes have been associated with cardiac pathologies leading to infant sudden cardiac death (SCD). Our aim was to take advantage of next generation sequencing (NGS) technology to perform a thorough genetic analysis of a SIDS case. A SIDS case was referred to our institution after negative autopsy. We performed a genetic analysis of 104 SCD-related genes using a custom panel. Confirmed variants in index case were also analyzed in relatives. Clinical evaluation of first-degree family members was performed. Relatives did not show pathology. NGS identified seven variants. Two previously described as pathogenic. Four previously catalogued without clinical significance. The seventh variation was novel. Familial segregation showed that the index cases mother carried all same genetic variations except one, which was inherited from the father. The sister of the index case carried three variants. We believe that molecular autopsy should be included in current forensic protocols after negative autopsy. In addition to NGS technologies, familial genetic testing should be also performed to clarify potential pathogenic role of new variants and to identify genetic carriers at risk of SCD.


PLOS ONE | 2016

Large Genomic Imbalances in Brugada Syndrome

Irene Mademont-Soler; Mel·lina Pinsach-Abuin; Helena Riuró; Jesus Mates; Alexandra Pérez-Serra; Monica Coll; Jose Manuel Porres; Del Olmo B; Anna Iglesias; Elisabeth Selga; Ferran Picó; Sara Pagans; Carles Ferrer-Costa; Georgia Sarquella-Brugada; Elena Arbelo; Sergi Cesar; Josep Brugada; Oscar Campuzano; Ramon Brugada

Purpose Brugada syndrome (BrS) is a form of cardiac arrhythmia which may lead to sudden cardiac death. The recommended genetic testing (direct sequencing of SCN5A) uncovers disease-causing SNVs and/or indels in ~20% of cases. Limited information exists about the frequency of copy number variants (CNVs) in SCN5A in BrS patients, and the role of CNVs in BrS-minor genes is a completely unexplored field. Methods 220 BrS patients with negative genetic results were studied to detect CNVs in SCN5A. 63 cases were also screened for CNVs in BrS-minor genes. Studies were performed by Multiplex ligation-dependent probe amplification or Next-Generation Sequencing (NGS). Results The detection rate for CNVs in SCN5A was 0.45% (1/220). The detected imbalance consisted of a duplication from exon 15 to exon 28, and could potentially explain the BrS phenotype. No CNVs were found in BrS-minor genes. Conclusion CNVs in current BrS-related genes are uncommon among BrS patients. However, as these rearrangements may underlie a portion of cases and they undergo unnoticed by traditional sequencing, an appealing alternative to conventional studies in these patients could be targeted NGS, including in a single experiment the study of SNVs, indels and CNVs in all the known BrS-related genes.


PLOS ONE | 2015

Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort.

Elisabet Selga; Oscar Campuzano; Mel·lina Pinsach-Abuin; Alexandra Pérez-Serra; Irene Mademont-Soler; Helena Riuró; Ferran Picó; Monica Coll; Anna Iglesias; Sara Pagans; Georgia Sarquella-Brugada; Paola Berne; Begoña Benito; Josep Brugada; Jose Manuel Porres; Matilde López Zea; Víctor Castro-Urda; Ignacio Fernández-Lozano; Ramon Brugada

Background Brugada syndrome (BrS) is a rare genetic cardiac arrhythmia that can lead to sudden cardiac death in patients with a structurally normal heart. Genetic variations in SCN5A can be identified in approximately 20-25% of BrS cases. The aim of our work was to determine the spectrum and prevalence of genetic variations in a Spanish cohort diagnosed with BrS. Methodology/Principal Findings We directly sequenced fourteen genes reported to be associated with BrS in 55 unrelated patients clinically diagnosed. Our genetic screening allowed the identification of 61 genetic variants. Of them, 20 potentially pathogenic variations were found in 18 of the 55 patients (32.7% of the patients, 83.3% males). Nineteen of them were located in SCN5A, and had either been previously reported as pathogenic variations or had a potentially pathogenic effect. Regarding the sequencing of the minority genes, we discovered a potentially pathogenic variation in SCN2B that was described to alter sodium current, and one nonsense variant of unknown significance in RANGRF. In addition, we also identified 40 single nucleotide variations which were either synonymous variants (four of them had not been reported yet) or common genetic variants. We next performed MLPA analysis of SCN5A for the 37 patients without an identified genetic variation, and no major rearrangements were detected. Additionally, we show that being at the 30-50 years range or exhibiting symptoms are factors for an increased potentially pathogenic variation discovery yield. Conclusions In summary, the present study is the first comprehensive genetic evaluation of 14 BrS-susceptibility genes and MLPA of SCN5A in a Spanish BrS cohort. The mean pathogenic variation discovery yield is higher than that described for other European BrS cohorts (32.7% vs 20-25%, respectively), and is even higher for patients in the 30-50 years age range.


International Journal of Legal Medicine | 2017

Medico-legal perspectives on sudden cardiac death in young athletes.

Antonio Oliva; Vincenzo M. Grassi; Oscar Campuzano; Maria Brion; Vincenzo Arena; Sara Partemi; Monica Coll; Vincenzo Lorenzo Pascali; Josep Brugada; Angel Carracedo; Ramon Brugada

Sudden cardiac death (SCD) in a young athlete represents a dramatic event, and an increasing number of medico-legal cases have addressed this topic. In addition to representing an ethical and medico-legal responsibility, prevention of SCD is directly correlated with accurate eligibility/disqualification decisions, with an inappropriate pronouncement in either direction potentially leading to legal controversy. This review summarizes the common causes of SCD in young athletes, divided into structural (hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, congenital coronary artery anomalies, etc.), electrical (Brugada, congenital LQT, Wolf-Parkinson-White syndrome, etc.), and acquired cardiac abnormalities (myocarditis, etc.). In addition, the roles of hereditary cardiac anomalies in SCD in athletes and the effects of a positive result on them and their families are discussed. The medico-legal relevance of pre-participation screening is analyzed, and recommendations from the American Heart Association and European Society of Cardiology are compared. Finally, the main issues concerning the differentiation between physiologic cardiac adaptation in athletes and pathologic findings and, thereby, definition of the so-called gray zone, which is based on exact knowledge of the mechanism of cardiac remodeling including structural or functional adaptions, will be addressed.


International Journal of Molecular Sciences | 2015

Rare Titin (TTN) Variants in Diseases Associated with Sudden Cardiac Death

Oscar Campuzano; Olallo Sanchez-Molero; Irene Mademont-Soler; Helena Riuró; Catarina Allegue; Monica Coll; Alexandra Pérez-Serra; Jesus Mates; Ferran Picó; Anna Iglesias; Ramon Brugada

A leading cause of death in western countries is sudden cardiac death, and can be associated with genetic disease. Next-generation sequencing has allowed thorough analysis of genes associated with this entity, including, most recently, titin. We aimed to identify potentially pathogenic genetic variants in titin. A total of 1126 samples were analyzed using a custom sequencing panel including major genes related to sudden cardiac death. Our cohort was divided into three groups: 432 cases from patients with cardiomyopathies, 130 cases from patients with channelopathies, and 564 post-mortem samples from individuals showing anatomical healthy hearts and non-conclusive causes of death after comprehensive autopsy. None of the patients included had definite pathogenic variants in the genes analyzed by our custom cardio-panel. Retrospective analysis comparing the in-house database and available public databases also was performed. We identified 554 rare variants in titin, 282 of which were novel. Seven were previously reported as pathogenic. Of these 554 variants, 493 were missense variants, 233 of which were novel. Of all variants identified, 399 were unique and 155 were identified at least twice. No definite pathogenic variants were identified in any of genes analyzed. We identified rare, mostly novel, titin variants that seem to play a potentially pathogenic role in sudden cardiac death. Additional studies should be performed to clarify the role of these variants in sudden cardiac death.


PLOS ONE | 2017

Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy

Irene Mademont Soler; Jesús Matés Ramírez; Raquel Yotti; María Ángeles Espinosa; Alexandra Pérez Serra; Ana Isabel Fernandez Avila; Monica Coll; Irene Méndez; Anna Iglesias; Bernat del Olmo; Helena Riuró Cáceres; Sofía Cuenca; Catarina Allegue; Oscar Campuzano Larrea; Ferran Picó; Carles Ferrer Costa; Patricia Álvarez; Sergio Castillo; Pablo García Pavía; Esther González López; Laura Padron Barthe; Aranzazu Díaz de Bustamante; María Teresa Darnaude; José Ignacio González Hevia; Josep Brugada Terradellas; Francisco Fernández Avilés; Ramon Brugada

Introduction Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of screening for minor and candidate genes, and the role of copy number variants (CNVs) deserves further evaluation. Methods Three hundred and eighty-seven consecutive unrelated patients with HCM were screened for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed 20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were compared with 427 patients without structural heart disease. Results The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main genes was 33.3%, without significant differences between the Sanger sequencing and NGS cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2, MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclusive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS) in TTN. The detection rate of rare variants in TTN was not significantly different to that found in the group of patients without structural heart disease. In the NGS cohort, 4 patients (1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the complete coding region of PLN. Conclusions A small percentage of HCM cases without point mutations in the 5 main genes are explained by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in HCM patients drastically increases the number of inconclusive tests, and shows a rate of VUS that is similar to patients without structural heart disease, suggesting that this gene should not be analyzed for clinical purposes in HCM.

Collaboration


Dive into the Monica Coll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Brugada

Montreal Heart Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep Brugada

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge