Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Dagnino is active.

Publication


Featured researches published by Monica Dagnino.


Journal of The American Society of Nephrology | 2003

Broadening the Spectrum of Diseases Related to Podocin Mutations

Gianluca Caridi; Roberta Bertelli; Marco Di Duca; Monica Dagnino; Francesco Emma; Andrea Onetti Muda; Francesco Scolari; Nunzia Miglietti; Gianna Mazzucco; Luisa Murer; Alba Carrea; Laura Massella; Gianfranco Rizzoni; Francesco Perfumo; Gian Marco Ghiggeri

A total of 179 children with sporadic nephrotic syndrome were screened for podocin mutations: 120 with steroid resistance, and 59 with steroid dependence/frequent relapses. Fourteen steroid-resistant patients presented homozygous mutations that were associated with early onset of proteinuria and variable renal lesions, including one case with mesangial C3 deposition. Single mutations of podocin were found in four steroid-resistant and in four steroid-dependent; five patients had the same mutation (P20L). Among these, two had steroid/cyclosporin resistance, two had steroid dependence, and one responded to cyclosporin. The common variant R229Q of podocin, recently associated with late-onset focal segmental glomerulosclerosis, had an overall allelic frequency of 4.2% versus 2.5% in controls. To further define the implication of R229Q, a familial case was characterized with two nephrotic siblings presenting the association of the R229Q with A297V mutation that were inherited from healthy mother and father, respectively. Immunohistochemistry with anti-podocin antibodies revealed markedly decreased expression of the protein in their kidneys. All carriers of heterozygous coding podocin mutation or R229Q were screened for nephrin mutation that was found in heterozygosity associated with R229Q in one patient. Finally, podocin loss of heterozygosity was excluded in one heterozygous child by characterizing cDNA from dissected glomeruli. These data outline the clinical features of sporadic nephrotic syndrome due to podocin mutations (homozygous and heterozygous) in a representative population with broad phenotype, including patients with good response to drugs. The pathogenetic implication of single podocin defects per se in proteinuria must be further investigated in view of the possibility that detection of a second mutation could have been missed. A suggested alternative is the involvement of other gene(s) or factor(s).


American Journal of Kidney Diseases | 2003

Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin.

Roberta Bertelli; Fabrizio Ginevri; Gianluca Caridi; Monica Dagnino; Silvio Sandrini; Marco Di Duca; Francesco Emma; Simone Sanna-Cherchi; Francesco Scolari; Tauro Maria Neri; Luisa Murer; Laura Massella; Giancarlo Basile; Gianfranco Rizzoni; Francesco Perfumo; Gian Marco Ghiggeri

BACKGROUND Posttransplant recurrence of focal segmental glomerulosclerosis (FSGS) occurs in a relevant proportion of FSGS patients and represents an important clinical emergency. It is taken as a proof of the existence of circulating permeability plasma factor(s) that are also putative effectors of original proteinuria in these patients. Familial forms of FSGS do not recur, but the discovery of numerous patients with sporadic FSGS and mutations of podocin (NPHS2, that is actually an inherited disease) who received a renal graft require a re-evaluation of the problem. METHODS To evaluate the incidence of posttransplant recurrence of FSGS in patients with NPHS2, the authors screened for podocin mutations in 53 patients with the clinical and pathologic stigmata of FSGS who had renal failure and who had undergone renal transplantation.Results. Twelve children were found to carry a homozygous (n9) or a heterozygous (n4) mutation of podocin and were classified, according to current criteria, as patients with inherited FSGS. In 5 patients of this group (38%), proteinuria recurred after renal graft and in 2, renal biopsy results showed recurrence of FSGS. Prerecurrence serum of 3 patients of this cohort was tested for antipodocin antibodies with indirect immuno-Western utilizing human podocyte extracts and were found negative. The rate of FSGS recurrence was comparable in non-NPHS2-FSGS children (12 of 27) and adults (3 of 13). Also clinical outcome of recurrence and response to plasmapheresis and immunosuppressors were comparable, suggesting a common mechanism. CONCLUSION These data show a high rate of FSGS recurrence in patients with NPHS2 mutations that is comparable with idiopathic FSGS and describe the successful therapeutic approach. Recurrence of an apparently inherited disease should stimulate a critical review of the mechanisms of recurrence and of original proteinuria in these cases.


Kidney International | 2011

Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome

Simone Sanna-Cherchi; Katelyn E. Burgess; Shannon N. Nees; Gianluca Caridi; Patricia L. Weng; Monica Dagnino; Monica Bodria; Alba Carrea; Maddalena Allegretta; Hyunjae R. Kim; Brittany J. Perry; Maddalena Gigante; Lorraine N. Clark; Sergey Kisselev; Daniele Cusi; Loreto Gesualdo; Landino Allegri; Francesco Scolari; Lawrence Shapiro; Carmine Pecoraro; Teresa Palomero; Gian Marco Ghiggeri; Ali G. Gharavi

To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6 Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.


Human Mutation | 2010

Mutations in SOX17 are Associated with Congenital Anomalies of the Kidney and the Urinary Tract

Stefania Gimelli; Gianluca Caridi; Silvana Beri; Kyle W. McCracken; Renata Bocciardi; Paola Zordan; Monica Dagnino; Patrizia Fiorio; Luisa Murer; Elisa Benetti; Orsetta Zuffardi; Roberto Giorda; James M. Wells; Giorgio Gimelli; Gian Marco Ghiggeri

Congenital anomalies of the kidney and the urinary tract (CAKUT) represent a major source of morbidity and mortality in children. Several factors (PAX, SOX,WNT, RET, GDFN, and others) play critical roles during the differentiation process that leads to the formation of nephron epithelia. We have identified mutations in SOX17, an HMG‐box transcription factor and Wnt signaling antagonist, in eight patients with CAKUT (seven vesico‐ureteric reflux, one pelvic obstruction). One mutation, c.775T>A (p.Y259N), recurred in six patients. Four cases derived from two small families; renal scars with urinary infection represented the main symptom at presentation in all but two patients. Transfection studies indicated a 5–10‐fold increase in the levels of the mutant protein relative to wild‐type SOX17 in transfected kidney cells. Moreover we observed a corresponding increase in the ability of SOX17 p.Y259N to inhibit Wnt/β‐catenin transcriptional activity, which is known to regulate multiple stages of kidney and urinary tract development. In conclusion, SOX17 p.Y259N mutation is recurrent in patients with CAKUT. Our data shows that this mutation correlates with an inappropriate accumulation of SOX17‐p.Y259N protein and inhibition of the β‐catenin/Wnt signaling pathway. These data indicate a role of SOX17 in human kidney and urinary tract development and implicate the SOX17–p.Y259N mutation as a causative factor in CAKUT.Hum Mutat 31:1352–1359, 2010.


American Journal of Human Genetics | 2007

Localization of a Gene for Nonsyndromic Renal Hypodysplasia to Chromosome 1p32-33

Simone Sanna-Cherchi; Gianluca Caridi; Patricia L. Weng; Monica Dagnino; Marco Seri; Anita Konka; Danio Somenzi; Alba Carrea; Claudia Izzi; Domenica Casu; Landino Allegri; Kai M. Schmidt-Ott; Jonathan Barasch; Francesco Scolari; Roberto Ravazzolo; Gian Marco Ghiggeri; Ali G. Gharavi

Nonsyndromic defects in the urinary tract are the most common cause of end-stage renal failure in children and account for a significant proportion of adult nephropathy. The genetic basis of these disorders is not fully understood. We studied seven multiplex kindreds ascertained via an index case with a nonsyndromic solitary kidney or renal hypodysplasia. Systematic ultrasonographic screening revealed that many family members harbor malformations, such as solitary kidneys, hypodysplasia, or ureteric abnormalities (in a total of 29 affected individuals). A genomewide scan identified significant linkage to a 6.9-Mb segment on chromosome 1p32-33 under an autosomal dominant model with reduced penetrance (peak LOD score 3.5 at D1S2652 in the largest kindred). Altogether, three of the seven families showed positive LOD scores at this interval, demonstrating heterogeneity of the trait (peak HLOD 3.9, with 45% of families linked). The chromosome 1p32-33 interval contains 52 transcription units, and at least 23 of these are expressed at stage E12.5 in the murine ureteric bud and/or metanephric mesenchyme. These data show that autosomal dominant nonsyndromic renal hypodysplasia and associated urinary tract malformations are genetically heterogeneous and identify a locus for this common cause of human kidney failure.


Clinical Journal of The American Society of Nephrology | 2009

Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

Gianluca Caridi; Maddalena Gigante; Pietro Ravani; Antonella Trivelli; Giancarlo Barbano; Francesco Scolari; Monica Dagnino; Luisa Murer; Corrado Murtas; Alberto Edefonti; Landino Allegri; Alessandro Amore; Rosanna Coppo; Francesco Emma; Tommaso De Palo; Rosa Penza; Loreto Gesualdo; Gian Marco Ghiggeri

BACKGROUND AND OBJECTIVES Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. RESULTS Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank chi(2) 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. CONCLUSIONS Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome.


American Journal of Kidney Diseases | 2000

Clinical and molecular heterogeneity of juvenile nephronophthisis in Italy: insights from molecular screening.

Gianluca Caridi; Monica Dagnino; Rosanna Gusmano; Fabrizio Ginevri; Luisa Murer; Luciana Ghio; Giorgio Piaggio; Maria Rosa Ciardi; Francesco Perfumo; Gian Marco Ghiggeri

Autosomal recessive nephronophthisis (NPH) is a renal disorder histologically characterized by tubulointerstitial lesions that are, in some cases, associated with extrarenal manifestations such as tapeto-retinal degeneration or liver fibrosis. The disease is usually pauci-symptomatic in an early phase but invariably evolves to end-stage renal failure in childhood or early adulthood. The recent discovery of the NPHP1 gene (nephrocystin) has prompted research into putative genotype-phenotype correlations. We screened a population of 68 Italian children (10 multiplex families, 47 sporadic cases) with a clinical and histopathologic picture of NPH and found a large homozygous deletion at 2q13 involving nephrocystin in 30 cases, and heterozygous deletion associated with new point mutations at exons 15 (Tyr518Ter) and 17 (Arg585Ter) of the gene in two other cases. The remaining 36 children had no apparent molecular defects of nephrocystin. In spite of this genetic heterogeneity, the two groups, with and without detectable molecular defects of nephrocystin, showed similar renal defects and comparable cumulative survival considering the start of dialysis as an end-point. The unique difference observed was a less frequent requirement of dialysis in NPH1 patients with pure renal form. Finally, tapeto-retinal degeneration was associated with renal lesions in seven cases presenting deletion of the nephrocystin gene and in five sporadic cases without molecular defects. These data show that a molecular defect of nephrocystin is involved in approximately 50% of patients with NPH, and another 50% require further molecular characterization. Research therefore should now be aimed at characterizing a new locus. In spite of the molecular heterogeneity, NPH in children presents similar renal and extrarenal manifestations, thus suggesting the involvement of common pathological routes.


Clinical Journal of The American Society of Nephrology | 2010

A Novel WT1 Gene Mutation in a Three-Generation Family with Progressive Isolated Focal Segmental Glomerulosclerosis

Elisa Benetti; Gianluca Caridi; Cristina Malaventura; Monica Dagnino; Emanuela Leonardi; Lina Artifoni; Gian Marco Ghiggeri; Luisa Murer

BACKGROUND AND OBJECTIVES Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping clinical and molecular features have been reported. Few familial cases have been described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been reported. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three generations of a family with late-onset isolated proteinuria. The effect of the detected amino acid substitution on WT1 proteins structure was studied by bioinformatics tools. RESULTS Three family members reached end-stage renal disease in full adulthood. None had genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 was identified in all of the affected members of the family. CONCLUSIONS The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or presence of typical Denys-Drash or Frasier syndrome clinical features. Structural analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA interactions, impairing target gene transcription. This finding opens up new issues about WT1 function in the maintenance of the complex gene network that regulates normal podocyte function.


International Journal of Molecular Sciences | 2011

Molecular diagnosis of analbuminemia: a new case caused by a nonsense mutation in the albumin gene.

Monica Dagnino; Gianluca Caridi; Ueli Haenni; Adrian Duss; Fabienne Aregger; Monica Campagnoli; Monica Galliano; Lorenzo Minchiotti

Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23–c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.


Nephrology Dialysis Transplantation | 2014

Novel INF2 mutations in an Italian cohort of patients with focal segmental glomerulosclerosis, renal failure and Charcot-Marie-Tooth neuropathy

Gianluca Caridi; Francesca Lugani; Monica Dagnino; Maddalena Gigante; Achille Iolascon; Mariateresa Falco; Claudio Graziano; Elisa Benetti; Mauro Dugo; Dorella Del Prete; Antonio Granata; Donella Borracelli; Elisabetta Moggia; Marco Quaglia; Rita Rinaldi; Loreto Gesualdo; Gian Marco Ghiggeri

BACKGROUND Mutations of INF2 represent the major cause of familial autosomal dominant (AD) focal segmental glomerulosclerosis (FSGS). A few patients present neurological symptoms of Charcot-Marie-Tooth (CMT) disease but the prevalence of the association has not been assessed yet. METHODS We screened 28 families with AD FSGS and identified 8 INF2 mutations in 9 families (32 patients overall), 3 of which were new. Mutations were in all cases localized in the diaphanous-inhibitory domain (DID) of the protein. RESULTS Clinical features associated with INF2 mutations in our patient cohort included mild proteinuria (1.55 g/L; range 1-2.5) and haematuria as a unique symptom that was recognized at a median age of 21.75 years (range 8-30). Eighteen patients developed end-stage renal disease during their third decade of life; 12 patients presented a creatinine range between 1.2 and 1.5 mg/dL and 2 were healthy at 45 and 54 years of age. CMT was diagnosed in four cases (12.5%); one of these patients presented an already known mutation on exon 2 of INF2, whereas the other patients presented the same mutation on exon 4, a region that was not previously associated with CMT. CONCLUSIONS We confirmed the high incidence of INF2 mutations in families with AD FSGS. The clinical phenotype was mild at the onset of the disease, but evolution to ESRD was frequent. The incidence of CMT has, for the first time, been calculated here to be 12.5% of mutation carriers. Our findings support INF2 gene analysis in families in which renal failure and/or neuro-sensorial defects are inherited following an AD model.

Collaboration


Dive into the Monica Dagnino's collaboration.

Top Co-Authors

Avatar

Gianluca Caridi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alba Carrea

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Di Duca

Istituto Giannina Gaslini

View shared research outputs
Researchain Logo
Decentralizing Knowledge