Monica De Caroli
University of Salento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica De Caroli.
Plant Journal | 2011
Monica De Caroli; Marcello Salvatore Lenucci; Gian Pietro Di Sansebastiano; Giuseppe Dalessandro; Giulia De Lorenzo; Gabriella Piro
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Food Chemistry | 2015
Marcello Salvatore Lenucci; Monica De Caroli; Pier Paolo Marrese; Andrea Iurlaro; Leonardo Rescio; Volker Böhm; Giuseppe Dalessandro; Gabriella Piro
This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control.
Plant Physiology | 2017
Vincenzo Lionetti; Eleonora Fabri; Monica De Caroli; Aleksander R. Hansen; William G. T. Willats; Gabriella Piro; Daniela Bellincampi
Pectin methylesterase inhibitors control PME activity to hinder pectin degradation as part of the plant immune response. Infection by necrotrophs is a complex process that starts with the breakdown of the cell wall (CW) matrix initiated by CW-degrading enzymes and results in an extensive tissue maceration. Plants exploit induced defense mechanisms based on biochemical modification of the CW components to protect themselves from enzymatic degradation. The pectin matrix is the main CW target of Botrytis cinerea, and pectin methylesterification status is strongly altered in response to infection. The methylesterification of pectin is controlled mainly by pectin methylesterases (PMEs), whose activity is posttranscriptionally regulated by endogenous protein inhibitors (PMEIs). Here, AtPMEI10, AtPMEI11, and AtPMEI12 are identified as functional PMEIs induced in Arabidopsis (Arabidopsis thaliana) during B. cinerea infection. AtPMEI expression is strictly regulated by jasmonic acid and ethylene signaling, while only AtPMEI11 expression is controlled by PME-related damage-associated molecular patterns, such as oligogalacturonides and methanol. The decrease of pectin methylesterification during infection is higher and the immunity to B. cinerea is compromised in pmei10, pmei11, and pmei12 mutants with respect to the control plants. A higher stimulation of the fungal oxalic acid biosynthetic pathway also can contribute to the higher susceptibility of pmei mutants. The lack of PMEI expression does not affect hemicellulose strengthening, callose deposition, and the synthesis of structural defense proteins, proposed as CW-remodeling mechanisms exploited by Arabidopsis to resist CW degradation upon B. cinerea infection. We show that PME activity and pectin methylesterification are dynamically modulated by PMEIs during B. cinerea infection. Our findings point to AtPMEI10, AtPMEI11, and AtPMEI12 as mediators of CW integrity maintenance in plant immunity.
Journal of Agricultural and Food Chemistry | 2012
Marcello Salvatore Lenucci; Lucia Serrone; Monica De Caroli; Paul D. Fraser; Peter M. Bramley; Gabriella Piro; Giuseppe Dalessandro
This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.
Food Chemistry | 2016
Miriana Durante; Marcello Salvatore Lenucci; Pier Paolo Marrese; Vito Rizzi; Monica De Caroli; Gabriella Piro; Paola Fini; Gian Luigi Russo; Giovanni Mita
Here we describe the encapsulation in α-cyclodextrins (α-CDs) of wheat bran, pumpkin and tomato oleoresins, extracted by supercritical carbon dioxide, to obtain freeze-dried powders useful as ready-to-mix ingredients for novel functional food formulation. The stability of tocochromanols, carotenoids and fatty acids in the oleoresin/α-CD complexes, compared to the corresponding free oleoresins, was also monitored over time in different combinations of storage conditions. Regardless of light, storage at 25°C of free oleoresins determined a rapid decrease in carotenoids, tocochromanols and PUFAs. α-CD encapsulation improved the stability of most bioactive compounds. Storage at 4°C synergized with encapsulation in preventing degradation of bioactives. Unlike all other antioxidants, lycopene in tomato oleoresin/α-CD complex resulted to be more susceptible to oxidation than in free oleoresin, likely due to its selective sequestration from the interaction with other lipophilic molecules of the oleoresin.
Journal of Chemistry | 2015
Anna Montefusco; Giuliana Semitaio; Pier Paolo Marrese; Andrea Iurlaro; Monica De Caroli; Gabriella Piro; Giuseppe Dalessandro; Marcello Salvatore Lenucci
We report the hydrophilic and lipophilic antioxidant activities, as well as the total phenol, flavonoid, tocochromanol (tocopherol and tocotrienol), and carotenoid contents in the edible portion of wild and cultivated varieties of chicory (Cichorium intybus L.) and in the basal rosette leaves of the wild species of poppy (Papaver rhoeas L.), known by natives as “paparina,” collected in the countryside of Salento (South Apulia, Italy). We analyzed (1) two cultivars of chicory, the “Catalogna” harvested in the area between S. Pietro Vernotico and Tuturano (Brindisi) and the “Otrantina” harvested in Otranto (Lecce); (2) two wild chicory ecotypes harvested in S. Pietro Vernotico (Brindisi) and Statte (Taranto), respectively; (3) the basal leaves of wild poppy harvested in Sternatia (Lecce). In all samples, our results showed that the hydrophilic antioxidant activity is, generally, higher than the lipophilic activity. Poppy leaves exhibited the highest hydrophilic and lipophilic antioxidant activities and the highest concentration of total phenols and flavonoids. Tocopherols were detected only as traces. Among the extracted carotenoids, lutein and β-carotene were the most abundant in all analyzed samples. Total carotenoid content was greater in wild than in cultivated plants.
Frontiers in Plant Science | 2015
Monica De Caroli; Marcello Salvatore Lenucci; Francesca Manualdi; Giuseppe Dalessandro; Giulia De Lorenzo; Gabriella Piro
The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1–10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal.
The Scientific World Journal | 2014
Monica De Caroli; Marcello Salvatore Lenucci; Gian Pietro Di Sansebastiano; Michela Tunno; Anna Montefusco; Giuseppe Dalessandro; Gabriella Piro
Cellulose synthase-like (Csl) genes are believed to encode enzymes for the synthesis of cell wall matrix polysaccharides. The subfamily of CslA is putatively involved in the biosynthesis of β-mannans. Here we report a study on the cellular localization and the enzyme activity of an Arabidopsis CslA family member, AtCslA2. We show that the fluorescent protein fusion AtCslA2-GFP, transiently expressed in tobacco leaf protoplasts, is synthesized in the ER and it accumulates in the Golgi stacks. The chimera is inserted in the Golgi membrane and is functional since membrane preparations obtained by transformed protoplasts carry out the in vitro synthesis of a 14C-mannan starting from GDP-d-[U-14C]mannose as substrate. The enzyme specific activity is increased by approximately 38% in the transformed protoplasts with respect to wild-type. Preliminary tests with proteinase K, biochemical data, and TM domain predictions suggest that the catalytic site of AtCslA2 faces the Golgi lumen.
Plant Signaling & Behavior | 2011
Monica De Caroli; Marcello Salvatore Lenucci; Gian Pietro Di Sansebastiano; Giuseppe Dalessandro; Giulia De Lorenzo; Gabriella Piro
Recently we have studied the secretion pattern of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2) in tobacco protoplast using the protein fusions, secGFP-PMEI1 and PGIP2-GFP. Both chimeras reach the cell wall by passing through the endomembrane system but using distinct mechanisms and through a pathway distinguishable from the default sorting of a secreted GFP. After reaching the apoplast, secGFP-PMEI1 is stably accumulated in the cell wall, while PGIP2-GFP undergoes endocytic trafficking. Here we describe the final localization of PGIP2-GFP in the vacuole, evidenced by co-localization with the marker Aleu-RFP, and show a graphic elaboration of its sorting pattern. A working model taking into consideration the presence of a regulated apoplast-targeted secretion pathway is proposed.
Frontiers in Plant Science | 2016
Andrea Iurlaro; Monica De Caroli; Erika Sabella; Mariarosaria De Pascali; Patrizia Rampino; Luigi De Bellis; Carla Perrotta; Giuseppe Dalessandro; Gabriello Piro; Stephen C. Fry; Marcello Salvatore Lenucci
Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.