Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Di Luca is active.

Publication


Featured researches published by Monica Di Luca.


The Journal of Neuroscience | 2006

A Critical Interaction between NR2B and MAGUK in l-DOPA Induced Dyskinesia

Fabrizio Gardoni; Barbara Picconi; Veronica Ghiglieri; Federica Polli; Vincenza Bagetta; Giorgio Bernardi; Flaminio Cattabeni; Monica Di Luca; Paolo Calabresi

Abnormal function of NMDA receptor has been suggested to be correlated with the pathogenesis of Parkinson’s disease (PD) as well as with the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia. Here we show that NMDA receptor NR2 subunits display specific alterations of their subcellular distribution in striata from unilateral 6-hydroxydopamine-lesioned, l-DOPA-treated dyskinetic, and l-DOPA-treated nondyskinetic rats. Dyskinetic animals have significantly higher levels of NR2A subunit in the postsynaptic compartment than all other experimental groups, whereas NR2B subunit shows a significant reduction in both dopamine-denervated and dyskinetic rats. These events are paralleled by profound modifications of NMDA receptor NR2B subunit association with interacting elements, i.e., members of the membrane-associated guanylate kinase (MAGUK) protein family postsynaptic density-95, synapse-associated protein-97 and synapse-associated protein-102. Treatment of nondyskinetic animals with a synthetic peptide (TAT2B) able to affect NR2B binding to MAGUK proteins as well as synaptic localization of this subunit in nondyskinetic rats was sufficient to induce a shift of treated rats toward a dyskinetic motor behavior. These data indicate abnormal NR2B redistribution between synaptic and extrasynaptic membranes as an important molecular disturbance of the glutamatergic synapse involved in l-DOPA-induced dyskinesia.


The Journal of Neuroscience | 2007

Synapse-Associated Protein-97 Mediates α-Secretase ADAM10 Trafficking and Promotes Its Activity

Elena Marcello; Fabrizio Gardoni; Daniela Mauceri; Stefano Romorini; Andreas Jeromin; Roberta Epis; Barbara Borroni; Flaminio Cattabeni; Carlo Sala; Alessandro Padovani; Monica Di Luca

Alzheimers disease (AD) is a chronic neurodegenerative disorder caused by a combination of events impairing normal neuronal function. Here we found a molecular bridge between key elements of primary and secondary pathogenic events in AD, namely the elements of the amyloid cascade and synaptic dysfunction associated with the glutamatergic system. In fact, we report that synapse-associated protein-97 (SAP97), a protein involved in dynamic trafficking of proteins to the excitatory synapse, is responsible for driving ADAM10 (a disintegrin and metalloproteinase 10, the most accredited candidate for α-secretase) to the postsynaptic membrane, by a direct interaction through its Src homology 3 domain. NMDA receptor activation mediates this event and positively modulates α-secretase activity. Furthermore, perturbing ADAM10/SAP97 association in vivo by cell-permeable peptides impairs ADAM10 localization in postsynaptic membranes and consequently decreases the physiological amyloid precursor protein (APP) metabolism. Our findings indicate that glutamatergic synapse activation through NMDA receptor promotes the non-amyloidogenic APP cleavage, strengthening the correlation between APP metabolism and synaptic plasticity.


Journal of Neurochemistry | 2004

Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines

Martina Zimmermann; Fabrizio Gardoni; Elena Marcello; Francesca Colciaghi; Barbara Borroni; Alessandro Padovani; Flaminio Cattabeni; Monica Di Luca

Acetylcholinesterase inhibitors (AChEIs) are the only currently available drugs for treating Alzheimers Disease (AD). Some authors have suggested a function of AChEIs not only in the induction of AChE overproduction and alternative splicing shifts but also a possible role of these drugs in amyloid metabolism beyond their well‐known symptomatic effect. Here, we investigate the mechanisms of action of the AChEI donepezil on APP (amyloid precursor protein) metabolism and on the activity/trafficking of the alpha‐secretase candidate ADAM 10, in differentiated human neuroblastoma cells (SH‐SY5Y). In these cells, the activity of AChE is significantly decreased after 2 h of donepezil treatment. Further, SH‐SY5Y cells released significantly more sAPPα into the medium, whereas total APP levels in cell lysates were unchanged. Interestingly, treated cells showed increased ADAM 10 levels in membrane compartments. This effect was prevented by pretreatment with tunicamycin or brefeldin, suggesting that donepezil affects trafficking and/or maturation of ADAM 10; additionally, this pretreatment significantly decreased sAPPα levels. Pre‐incubation with atropine decreased release of sAPPα significantly but did not revert ADAM 10 activity to control levels further suggesting that donepezil acts not solely through a purely receptor mediated pathway. These findings indicate that donepezil exerts multiple mechanisms involving processing and trafficking of key proteins involved in AD pathogenesis.


The Journal of Neuroscience | 2004

Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism

Barbara Picconi; Fabrizio Gardoni; Diego Centonze; Daniela Mauceri; M. Angela Cenci; Giorgio Bernardi; Paolo Calabresi; Monica Di Luca

The NMDA receptor complex represents a key molecular element in the pathogenesis of long-term synaptic changes and motor abnormalities in Parkinsons disease (PD). Here we show that NMDA receptor 1 (NR1) subunit and postsynaptic density (PSD)-95 protein levels are selectively reduced in the PSD of dopamine (DA)-denervated striata. These effects are accompanied by an increase in striatal levels of αCa2+-calmodulin-dependent protein kinase II (αCaMKII) autophosphorylation, along with a higher recruitment of activated αCaMKII to the regulatory NMDA receptor NR2A-NR2B subunits. Acute treatment of striatal slices with R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride, but not with l-sulpiride, mimicked the effect of DA denervation on both αCaMKII autophosphorylation and corticostriatal synaptic plasticity. In addition to normalizing αCaMKII autophosphorylation levels as well as assembly and anchoring of the kinase to the NMDA receptor complex, intrastriatal administration of the CaMKII inhibitors KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) and antennapedia autocamtide-related inhibitory peptide II is able to reverse both the alterations in corticostriatal synaptic plasticity and the deficits in spontaneous motor behavior that are found in an animal model of PD. The same beneficial effects are produced by a regimen of l-3,4-dihydroxyphenylalanine (l-DOPA) treatment, which is able to normalize αCaMKII autophosphorylation. These data indicate that abnormal αCaMKII autophosphorylation plays a causal role in the alterations of striatal plasticity and motor behavior that follow DA denervation. Normalization of CaMKII activity may be an important underlying mechanism of the therapeutic action of l-DOPA in PD.


The Journal of Neuroscience | 2010

Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition

Vincent Paillé; Barbara Picconi; Vincenza Bagetta; Veronica Ghiglieri; Carmelo Sgobio; Massimiliano Di Filippo; Maria Teresa Viscomi; Carmela Giampà; Francesca Fusco; Fabrizio Gardoni; Giorgio Bernardi; Paul Greengard; Monica Di Luca; Paolo Calabresi

A correct interplay between dopamine (DA) and glutamate is essential for corticostriatal synaptic plasticity and motor activity. In an experimental model of Parkinsons disease (PD) obtained in rats, the complete depletion of striatal DA, mimicking advanced stages of the disease, results in the loss of both forms of striatal plasticity: long-term potentiation (LTP) and long-term depression (LTD). However, early PD stages are characterized by an incomplete reduction in striatal DA levels. The mechanism by which this incomplete reduction in DA level affects striatal synaptic plasticity and glutamatergic synapses is unknown. Here we present a model of early PD in which a partial denervation, causing mild motor deficits, selectively affects NMDA-dependent LTP but not LTD and dramatically alters NMDA receptor composition in the postsynaptic density. Our findings show that DA decrease influences corticostriatal synaptic plasticity depending on the level of depletion. The use of the TAT2A cell-permeable peptide, as an innovative therapeutic strategy in early PD, rescues physiological NMDA receptor composition, synaptic plasticity, and motor behavior.


The Journal of Neuroscience | 2009

Decreased NR2B Subunit Synaptic Levels Cause Impaired Long-Term Potentiation But Not Long-Term Depression

Fabrizio Gardoni; Daniela Mauceri; Matteo Malinverno; Federica Polli; Cinzia Costa; Alessandro Tozzi; Sabrina Siliquini; Barbara Picconi; Flaminio Cattabeni; Paolo Calabresi; Monica Di Luca

The discovery of the molecular mechanisms regulating the abundance of synaptic NMDA receptors is essential for understanding how synaptic plasticity, as well as excitotoxic events, are regulated. However, a complete understanding of the precise molecular mechanisms regulating the composition of the NMDA receptor complex at hippocampal synapse is still missing. Here, we show that 2 h of CaMKII inhibition leads to a specific reduction of synaptic NR2B-containing NMDA receptors without affecting localization of the NR2A subunit; this molecular event is accompanied by a dramatic reduction in the induction of long-term potentiation (LTP), while long-term depression induction is unaffected. The same molecular and functional results were obtained by disrupting NR2B/PSD-95 complex with NR2B C-tail cell permeable peptide (TAT-2B). These data indicate that NR2B redistribution between synaptic and extrasynaptic membranes represents an important molecular disturbance of the glutamatergic synapse and affects the correct induction of LTP.


The Journal of Neuroscience | 2010

Synaptic Activity Controls Dendritic Spine Morphology by Modulating eEF2-Dependent BDNF Synthesis

Chiara Verpelli; Giovanni Piccoli; Cristina Zibetti; Alice Zanchi; Fabrizio Gardoni; Kun Huang; Dario Brambilla; Monica Di Luca; Elena Battaglioli; Carlo Sala

Activity-dependent changes in synaptic structure and spine morphology are required for learning and memory, and depend on protein translation. We show that the kinase for eukaryotic elongation factor 2 (eEF2K) regulates dendritic spine stability and synaptic structure by modulating activity-dependent dendritic BDNF synthesis. Specifically RNAi knockdown of eEF2K reduces dendritic spine stability and inhibits dendritic BDNF protein expression; whereas overexpression of a constitutively activated eEF2K induces spine maturation and increases expression of dendritic BDNF. Furthermore, BDNF overexpression rescues the spine stability reduced by RNAi knockdown of eEF2K. We also show that synaptic activity-dependent spine maturation and dendritic BDNF protein expression depend on mGluR/EF2K-induced eEF2 phosphorylation. We propose that the eEF2K/eEF2 pathway is a key biochemical sensor that couple neuronal activity to spine plasticity, by controlling the dendritic translation of BDNF.


Journal of Biological Chemistry | 2003

CaMKII-dependent Phosphorylation Regulates SAP97/NR2A Interaction

Fabrizio Gardoni; Daniela Mauceri; Chiara Fiorentini; Camilla Bellone; Cristina Missale; Flaminio Cattabeni; Monica Di Luca

Synapse-associated protein 97 (SAP97), a member of membrane-associated guanylate kinase protein family, has been implicated in the processes of targeting ionotropic glutamate receptors at postsynaptic sites. Here we show that SAP97 is enriched at the postsynaptic density where it co-localizes with both ionotropic glutamate receptors and downstream signaling proteins such as Ca2+/calmodulin-dependent protein kinase II (CaMKII). SAP97 and αCaMKII display a high co-localization pattern in hippocampal neurons as well as in transfected COS-7 cells. Metabolic labeling of hippocampal cultures reveals that N-methyl-d-aspartic acid (NMDA) receptor activation induces CaMKII-dependent phosphorylation of SAP97; co-incubation with the CaMKII-specific inhibitor KN-93 reduces SAP97 phosphorylation to basal levels. Our results show that SAP97 directly interacts with the NR2A subunit of NMDA receptor both in an in vitro “pull-out” assay and in co-immunoprecipitation experiments from homogenates and synaptosomes purified from hippocampal rat tissue. Interestingly, in the postsynaptic density fraction, SAP97 fails to co-precipitate with NR2A. We show here that SAP97 is directly associated with NR2A through its PDZ1 domain, and CaMKII-dependent phosphorylation of SAP97-Ser-232 disrupts NR2A interaction both in an in vitro pull-out assay and in transfected COS-7 cells. Moreover, expression of SAP97(S232D) mutant has effects similar to those observed upon constitutively activating CaMKII. Our findings suggest that SAP97/NR2A interaction is regulated by CaMKII-dependent phosphorylation and provide a novel mechanism for the regulation of synaptic targeting of NMDA receptor subunits.


Journal of Neuropathology and Experimental Neurology | 1999

Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses

Claudia Colacitti; Giulio Sancini; Silvia DeBiasi; Silvana Franceschetti; Antonio Caputi; Carolina Frassoni; Flaminio Cattabeni; Giuliano Avanzini; Roberto Spreafico; Monica Di Luca; Giorgio Battaglia

A double methylazoxymethanol (MAM) intraperitoneal injection was prenatally administered to pregnant rats at gestational day 15 to induce developmental brain dysgeneses. Thirty adult rats from 8 different progenies were investigated with a combined electrophysiological and neuroanatomical analysis. The offspring of treated dams was characterized by extensive cortical layering abnormalities, subpial bands of heterotopic neurons in layer I, and subcortical nodules of heterotopic neurons extending from the periventricular region to the hippocampus and neocortex. The phenotype of cell subpopulations within the heterotopic structures was analyzed by means of antibodies raised against glial and neuronal markers, calcium binding proteins, GABA, and AMPA glutamate receptors. Neurons within the subcortical heterotopic nodules were characterized by abnormal firing properties, with sustained repetitive bursts of action potentials. The subcortical nodules were surrounded by cell clusters with ultrastructural features of young migrating neurons. The immunocytochemical data suggested, moreover, that the subcortical heterotopia were formed by neurons originally committed to the neocortex and characterized by morphological features similar to those found in human periventricular nodular heterotopia. The present study demonstrates that double MAM treatment at gestational day 15 induces in rats developmental brain abnormalities whose anatomical and physiological features bear resemblance to those observed in human brain dysgeneses associated with intractable epilepsy. Therefore, MAM treated rats could be considered as useful tools in investigating the pathogenic mechanisms involved in human developmental brain dysgeneses.


Journal of Biological Chemistry | 2006

Interleukin-1β Released by gp120 Drives Neural Death through Tyrosine Phosphorylation and Trafficking of NMDA Receptors

Barbara Viviani; Fabrizio Gardoni; Stefano Bartesaghi; Emanuela Corsini; Alessandra Facchi; C. Galli; Monica Di Luca; Marina Marinovich

Interleukin-1β is a proinflammatory cytokine implicated under pathological conditions involving NMDA receptor activation, including the AIDS dementia complex (HAD). No information is available on the molecular mechanisms recruited by native interleukin-1β produced under this type of condition. Using a sandwich co-culture of primary hippocampal neurons and glia, we investigated whether native interleukin-1β released by HIV-gp120-activated glia (i) affects NMDAR functions and (ii) the relevance on neuronal spine density and survival, two specific traits of HAD. Increased phosphorylation of NR2B Tyr-1472 was observed after 24 h of exposure of neurons to 600 pm gp120. This effect occurred only when neurons were treated in the presence of glial cells and was abolished by the interleukin-1 receptor antagonist (IL-1ra). Gp120-induced phosphorylation of NR2B resulted in a sustained elevation of intracellular Ca2+ in neurons and in a significant increase of NR2B binding to PSD95. Increased intracellular Ca2+ was prevented by 10 μm ifenprodil, that selectively inhibits receptors containing the NR2B, by interleukin-1ra and by Ca-pYEEIE, a Src family SH2 inhibitor peptide. These last two inhibitors, prevented also NR2B binding to PSD95. Finally, gp120 reduced by 35% of the total PSD95 positive spine density after 48 h of treatment and induced by 30% of the neuronal death. Again, both of these effects were blocked by Ca-pYEEIE. Altogether, our data show that gp120 releasing interleukin-1β from glia increases tyrosine phosphorylation of NMDAR. Thus, tyrosine phosphorylation may contribute to the sensitization of the receptor increasing its function and synaptic localization. Both of these effects are relevant for neurodegeneration.

Collaboration


Dive into the Monica Di Luca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Calabresi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge