Monica Di Paola
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica Di Paola.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Carlotta De Filippo; Duccio Cavalieri; Monica Di Paola; Matteo Ramazzotti; Jean Baptiste Poullet; Sébastien Massart; Silvia Collini; Giuseppe Pieraccini; Paolo Lionetti
Gut microbial composition depends on different dietary habits just as health depends on microbial metabolism, but the association of microbiota with different diets in human populations has not yet been shown. In this work, we compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture. By using high-throughput 16S rDNA sequencing and biochemical analyses, we found significant differences in gut microbiota between the two groups. BF children showed a significant enrichment in Bacteroidetes and depletion in Firmicutes (P < 0.001), with a unique abundance of bacteria from the genus Prevotella and Xylanibacter, known to contain a set of bacterial genes for cellulose and xylan hydrolysis, completely lacking in the EU children. In addition, we found significantly more short-chain fatty acids (P < 0.001) in BF than in EU children. Also, Enterobacteriaceae (Shigella and Escherichia) were significantly underrepresented in BF than in EU children (P < 0.05). We hypothesize that gut microbiota coevolved with the polysaccharide-rich diet of BF individuals, allowing them to maximize energy intake from fibers while also protecting them from inflammations and noninfectious colonic diseases. This study investigates and compares human intestinal microbiota from children characterized by a modern western diet and a rural diet, indicating the importance of preserving this treasure of microbial diversity from ancient rural communities worldwide.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Irene Stefanini; Leonardo Dapporto; Jean-Luc Legras; Antonio Calabretta; Monica Di Paola; Carlotta De Filippo; Roberto Viola; Paolo Capretti; Mario Polsinelli; Stefano Turillazzi; Duccio Cavalieri
Saccharomyces cerevisiae is one of the most important model organisms and has been a valuable asset to human civilization. However, despite its extensive use in the last 9,000 y, the existence of a seasonal cycle outside human-made environments has not yet been described. We demonstrate the role of social wasps as vector and natural reservoir of S. cerevisiae during all seasons. We provide experimental evidence that queens of social wasps overwintering as adults (Vespa crabro and Polistes spp.) can harbor yeast cells from autumn to spring and transmit them to their progeny. This result is mirrored by field surveys of the genetic variability of natural strains of yeast. Microsatellites and sequences of a selected set of loci able to recapitulate the yeast strain’s evolutionary history were used to compare 17 environmental wasp isolates with a collection of strains from grapes from the same region and more than 230 strains representing worldwide yeast variation. The wasp isolates fall into subclusters representing the overall ecological and industrial yeast diversity of their geographic origin. Our findings indicate that wasps are a key environmental niche for the evolution of natural S. cerevisiae populations, the dispersion of yeast cells in the environment, and the maintenance of their diversity. The close relatedness of several wasp isolates with grape and wine isolates reflects the crucial role of human activities on yeast population structure, through clonal expansion and selection of specific strains during the biotransformation of fermented foods, followed by dispersal mediated by insects and other animals.
Inflammatory Bowel Diseases | 2014
Marina Aloi; Paolo Lionetti; Arrigo Barabino; Graziella Guariso; Stefano Costa; Massimo Fontana; Claudio Romano; G. Lombardi; Erasmo Miele; P. Alvisi; P. Diaferia; M. Baldi; Vittorio Romagnoli; Marco Gasparetto; Monica Di Paola; Monica Muraca; Salvatore Pellegrino; Salvatore Cucchiara; Stefano Martelossi
Background:Early-onset (EO) pediatric inflammatory bowel diseases (IBD) seem to be more extensive than those with a later onset. To test this hypothesis, we examined the phenotype and disease course of patients with IBD diagnosis at 0 to 5 years, compared with the ranges 6 to 11 and 12 to 18 years. Methods:Anatomic locations and behaviors were assessed according to Paris classification in 506 consecutive patients: 224 Crohns disease, 245 ulcerative colitis, and 37 IBD-unclassified. Results:Eleven percent of patients were in the range 0 to 5 years, 39% in 6 to 11 years, and 50% in 12 to 18 years. Ulcerative colitis was the most frequent diagnosis in EO-IBD and in 6- to 11-year-old group, whereas Crohns disease was predominant in older children. A classification as IBD-unclassified was more common in the range 0 to 5 years compared with the other groups (P < 0.005). EO Crohns disease showed a more frequent isolated colonic (P < 0.005) and upper gastrointestinal involvement than later-onset disease. Sixty-two percent of the patients in the 0 to 5 years range had pancolonic ulcerative colitis, compared with 38% of 6 to 11 years (P = 0.02) and 31% of 12–18 years (P = 0.002) range. No statistical difference for family history for IBD was found in the 3-year age groups. Therapies at the diagnosis were similar for all children. However, at latest follow-up, a significantly higher proportion of younger children were under steroids compared with older groups (P < 0.05). Surgical risk did not differ according to age. Conclusions:EO-IBD exhibits an extensive phenotype and benefit from aggressive treatment strategies, although surgical risk is similar to later-onset disease. A family history for IBD is not common in EO disease.
Scientific Reports | 2017
Monica Di Paola; Cristina Sani; Ann Maria Clemente; Anna Iossa; Eloisa Perissi; Giuseppe Castronovo; Michele Tanturli; Damariz Rivero; Federico Cozzolino; Duccio Cavalieri; Francesca Carozzi; Carlotta De Filippo; Maria Gabriella Torcia
Changes in cervico-vaginal microbiota with Lactobacillus depletion and increased microbial diversity facilitate human papillomavirus (HPV) infection and might be involved in viral persistence and cancer development. To define the microbial Community State Types (CSTs) associated with high-risk HPV−persistence, we analysed 55 cervico-vaginal samples from HPV positive (HPV+) women out of 1029 screened women and performed pyrosequencing of 16S rDNA. A total of 17 samples from age-matched HPV negative (HPV−) women were used as control. Clearance or Persistence groups were defined by recalling women after one year for HPV screening and genotyping. A CST IV subgroup, with bacterial genera such as Gardnerella, Prevotella, Megasphoera, Atopobium, frequently associated with anaerobic consortium in bacterial vaginosis (BV), was present at baseline sampling in 43% of women in Persistence group, and only in 7.4% of women in Clearance group. Atopobium genus was significantly enriched in Persistence group compared to the other groups. Sialidase-encoding gene from Gardnerella vaginalis, involved in biofilm formation, was significantly more represented in Persistence group compared to the other groups. Based on these data, we consider the CST IV-BV as a risk factor for HPV persistence and we propose Atopobium spp and sialidase gene from G. vaginalis as microbial markers of HPV−persistence.
Frontiers in Microbiology | 2017
Carlotta De Filippo; Monica Di Paola; Matteo Ramazzotti; Davide Albanese; Giuseppe Pieraccini; Elena Banci; Franco Miglietta; Duccio Cavalieri; Paolo Lionetti
Diet is one of the main factors that affects the composition of gut microbiota. When people move from a rural environment to urban areas, and experience improved socio-economic conditions, they are often exposed to a “globalized” Western type diet. Here, we present preliminary observations on the metagenomic scale of microbial changes in small groups of African children belonging to the same ethnicity and living in different environments, compared to children living on the urban area of Florence (Italy). We analyzed dietary habits and, by pyrosequencing of the 16S rRNA gene, gut microbiota profiles from fecal samples of children living in a rural village of Burkina Faso (n = 11), of two groups of children living in different urban settings (Nanoro town, n = 8; Ouagadougou, the capital city, n = 5) and of a group of Italian children (n = 13). We observed that when foods of animal origin, those rich in fat and simple sugars are introduced into a traditional African diet, composed of cereals, legumes and vegetables, the gut microbiota profiles changes. Microbiota of rural children retain a geographically unique bacterial reservoir (Prevotella, Treponema, and Succinivibrio), assigned to ferment fiber and polysaccharides from vegetables. Independently of geography and ethnicity, in children living in urban areas these bacterial genera were progressively outcompeted by bacteria more suited to the metabolism of animal protein, fat and sugar rich foods, similarly to Italian children, as resulted by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a predictive functional profiling of microbial communities using 16S rRNA marker gene. Consequently, we observed a progressive reduction of SCFAs measured by gas chromatography–mass spectrometry, in urban populations, especially in Italian children, respect to rural ones. Our results even if in a limited number of individuals point out that dietary habit modifications in the course of urbanization play a role in shaping gut microbiota, and that ancient microorganisms, such as fiber-degrading bacteria, are at risk of being eliminated by the fast paced globalization of foods and by the advent of westernized lifestyle.
Frontiers in Microbiology | 2016
Monica Di Paola; Duccio Cavalieri; Davide Albanese; Maddalena Sordo; Massimo Pindo; Claudio Donati; Ilaria Pagnini; Teresa Giani; Gabriele Simonini; Alessia Paladini; Paolo Lionetti; Carlotta De Filippo; Rolando Cimaz
Alteration of gut microbiota is involved in several chronic inflammatory and autoimmune diseases, including rheumatoid arthritis, and gut microbial “pro-arthritogenic” profiles have been hypothesized. Intestinal inflammation may be involved in spondyloarthropathies and in a subset of patients affected by Juvenile Idiopathic Arthritis (JIA), the most common chronic rheumatic disease of childhood. We compared the fecal microbiota composition of JIA patients with healthy subjects (HS), evaluating differences in microbial profiles between sub-categories of JIA, such as enthesitis-related arthritis (JIA-ERA), in which inflammation of entheses occurs, and polyarticular JIA, non-enthesitis related arthritis (JIA-nERA). Through taxon-level analysis, we discovered alteration of fecal microbiota components that could be involved in subclinical gut inflammation, and promotion of joint inflammation. We observed abundance in Ruminococcaceae in both JIA categories, reduction in Clostridiaceae and Peptostreptococcaceae in JIA-ERA, and increase in Veillonellaceae in JIA-nERA, respectively, compared with HS. Among the more relevant genera, we found an increase in Clostridium cluster XIVb, involved in colitis and arthritis, in JIA-ERA patients compared with HS, and a trend of decrease in Faecalibacterium, known for anti-inflammatory properties, in JIA-nERA compared with JIA-ERA and HS. Differential abundant taxa identified JIA patients for the HLA-B27 allele, including Bilophila, Clostridium cluster XIVb, Oscillibacter, and Parvimonas. Prediction analysis of metabolic functions showed that JIA-ERA metagenome was differentially enriched in bacterial functions related to cell motility and chemotaxis, suggesting selection of potential virulence traits. We also discovered differential microbial profiles and intra-group variability among active disease and remission, suggesting instability of microbial ecosystem in autoimmune diseases with respect to healthy status. Similarly to other chronic autoimmune and inflammatory diseases, different microbial profiles, as observed among different JIA subgroups compared to HS, and potential functional acquisition related to migration, could promote inflammation and contribute to the disease pathogenesis.
Frontiers in Immunology | 2018
Duccio Cavalieri; Monica Di Paola; Lisa Rizzetto; Noemi Tocci; Carlotta De Filippo; Paolo Lionetti; Andrea Ardizzoni; Bruna Colombari; Simona Paulone; Ivo Gut; Luisa Berná; Marta Gut; Julie Blanc; Misha Kapushesky; Eva Pericolini; Elisabetta Blasi; Samuele Peppoloni
The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2). In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we propose that the co-occurrence of changes in sequence and expression in genes and pathways driving dimorphic transition and pathogenicity reflects a selective balance between traits favoring dissemination of the pathogen and traits involved in host defense evasion. This study highlights the importance of investigating strain-level, rather than species level, differences, when determining fungal–host interactions and defining commensal or pathogen behavior.
bioRxiv | 2014
Carlotta De Filippo; Monica Di Paola; Irene Stefanini; Lisa Rizzetto; Luisa Berná; Matteo Ramazzotti; Leonardo Dapporto; Damariz Rivero; Ivo Gut; Marta Gut; Mònica Bayés; Jean-Luc Legras; Roberto Viola; Cristina Massi-Benedetti; Antonella De Luca; Luigina Romani; Paolo Lionetti; Duccio Cavalieri
The quest for the ecological niches of Saccharomyces cerevisiae ranged from wineries to oaks and more recently to the gut of Crabro Wasps. Here we propose the role of the human gut in shaping S. cerevisiae evolution, presenting the genetic structure of a previously unknown population of yeasts, associated with Crohn’s disease, providing evidence for clonal expansion within human’s gut. To understand the role of immune function in the human-yeast interaction we classified strains according to their immunomodulatory properties, discovering a set of genetically homogeneous isolates, capable of inducing anti-inflammatory signals via regulatory T cells proliferation, and on the contrary, a positive association between strain mosaicism and ability to elicit inflammatory, IL-17 driven, immune responses. The approach integrating genomics with immune phenotyping showed selection on genes involved in sporulation and cell wall remodeling as central for the evolution of S. cerevisiae Crohn’s strains from passengers to commensals to potential pathogens.
Scientific Reports | 2018
Monica Di Paola; Elena Bonechi; Gustavo Provensi; Alessia Costa; Gerard Clarke; Clara Ballerini; Carlotta De Filippo; M. Beatrice Passani
The lipid sensor oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α) secreted in the proximal intestine, is endowed with several distinctive homeostatic properties, such as control of appetite, anti-inflammatory activity, stimulation of lipolysis and fatty acid oxidation. When administered exogenously, OEA has beneficial effects in several cognitive paradigms; therefore, in all respects, OEA can be considered a hormone of the gut-brain axis. Here we report an unexplored modulatory effect of OEA on the intestinal microbiota and on immune response. Our study shows for the first time that sub-chronic OEA administration to mice fed a normal chow pellet diet, changes the faecal microbiota profile, shifting the Firmicutes:Bacteroidetes ratio in favour of Bacteroidetes (in particular Bacteroides genus) and decreasing Firmicutes (Lactobacillus), and reduces intestinal cytokines expression by immune cells isolated from Peyer’s patches. Our results suggest that sub-chronic OEA treatment modulates gut microbiota composition towards a “lean-like phenotype”, and polarises gut-specific immune responses mimicking the effect of a diet low in fat and high in polysaccharides content.
Environmental Microbiology | 2018
Matteo Ramazzotti; Irene Stefanini; Monica Di Paola; Carlotta De Filippo; Lisa Rizzetto; Luisa Berná; Leonardo Dapporto; Damariz Rivero; Noemi Tocci; Tobias Weil; Marcello Salvatore Lenucci; Paolo Lionetti; Duccio Cavalieri
The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the hosts gut as a potential reservoir for yeast adaptation. Here, we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1715 combined CDSs from whole-genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the hosts gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain-specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodelling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut.