Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica L. Kearney is active.

Publication


Featured researches published by Monica L. Kearney.


Journal of Strength and Conditioning Research | 2010

The Acute Response of Practical Occlusion in the Knee Extensors

Jeremy P. Loenneke; Monica L. Kearney; Austin D. Thrower; Sean Collins; Thomas J. Pujol

Loenneke, JP, Kearney, ML, Thrower, AD, Collins, S, and Pujol, TJ. The acute response of practical occlusion in the knee extensors. J Strength Cond Res 24(10): 2831-2834, 2010-Training at low intensities with moderate vascular occlusion results in increased muscle hypertrophy, strength, and endurance. Elastic knee wraps, applied to the proximal portion of the target muscle, might elicit a stimulus similar to the KAATSU Master Apparatus. The purpose of this study was to test the hypothesis that intermittently occluding the leg extensors with elastic knee wraps would increase whole-blood lactate (WBL) over control (CON). Twelve healthy men and women participated in this study (age 21.2 ± 0.35 years, height 168.9 ± 2.60 cm, and body mass 71.2 ± 4.16 kg). One repetition maximum (1RM) testing for the leg extensors was performed on a leg extension machine for the first trial, followed by occlusion (OCC) and CON trials. Four sets of leg extension exercise (30-15-15-15) were completed with 150-second rest between sets at 30% 1RM. Whole-blood lactate, heart rate (HR), and ratings of perceived exertion (RPEs) were measured after every set of exercise and 3 minutes postexercise. Data were analyzed using repeated-measures analysis of variance with statistical significance set at p ≤ 0.05. Whole-blood lactate increased in response to exercise (p = 0.01) but was not different between groups (OCC 6.28 ± 0.66 vs. CON 5.35 ± 0.36 mmol·L−1, p = 0.051). Heart rate (OCC 128.86 ± 4.37 vs. CON 119.72 ± 4.10 b·min−1) was higher with OCC from sets 2-4 (p ≤ 0.03), with no difference 3 minutes postexercise (p = 0.29). Rating of perceived exertion was higher with OCC after every set (OCC 15.10 ± 0.31 vs. CON 12.16 ± 0.50, p = 0.01). In conclusion, no differences exist for WBL between groups, although there was a trend for higher levels with OCC. The current protocol for practical occlusion did not significantly increase metabolic stress more than normal low-intensity exercise. This study does not support the use of knee wraps as a mode of blood-flow restriction.


American Journal of Physiology-endocrinology and Metabolism | 2014

Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats

Melissa A. Linden; Justin A. Fletcher; E. Matthew Morris; Grace M. Meers; Monica L. Kearney; Jacqueline M. Crissey; M. Harold Laughlin; Frank W. Booth; James R. Sowers; Jamal A. Ibdah; John P. Thyfault; R. Scott Rector

Here, we sought to compare the efficacy of combining exercise and metformin for the treatment of type 2 diabetes and nonalcoholic fatty liver disease (NAFLD) in hyperphagic, obese, type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats (age: 20 wk, hyperglycemic and hyperinsulinemic; n = 10/group) were randomly assigned to sedentary (O-SED), SED plus metformin (O-SED + M; 300 mg·kg(-1)·day(-1)), moderate-intensity exercise training (O-EndEx; 20 m/min, 60 min/day, 5 days/wk treadmill running), or O-EndEx + M groups for 12 wk. Long-Evans Tokushima Otsuka (L-SED) rats served as nonhyperphagic controls. O-SED + M, O-EndEx, and O-EndEx + M were effective in the management of type 2 diabetes, and all three treatments lowered hepatic steatosis and serum markers of liver injury; however, O-EndEx lowered liver triglyceride content and fasting hyperglycemia more than O-SED + M. In addition, exercise elicited greater improvements compared with metformin alone on postchallenge glycemic control, liver diacylglycerol content, hepatic mitochondrial palmitate oxidation, citrate synthase, and β-HAD activities and in the attenuation of markers of hepatic fatty acid uptake and de novo fatty acid synthesis. Surprisingly, combining metformin and aerobic exercise training offered little added benefit to these outcomes, and in fact, metformin actually blunted exercise-induced increases in complete mitochondrial palmitate oxidation and β-HAD activity. In conclusion, aerobic exercise training was more effective than metformin administration in the management of type 2 diabetes and NAFLD outcomes in obese hyperphagic OLETF rats. Combining therapies offered little additional benefit beyond exercise alone, and findings suggest that metformin potentially impairs exercise-induced hepatic mitochondrial adaptations.


Medicine and Science in Sports and Exercise | 2014

One Bout of Exercise Alters Free-Living Postprandial Glycemia in Type 2 Diabetes

Douglas J. Oberlin; Catherine R. Mikus; Monica L. Kearney; Pamela S. Hinton; Camila Manrique; Heather J. Leidy; Jill A. Kanaley; R. Scott Rector; John P. Thyfault

PURPOSE Elevated postprandial glycemic (PPG) excursions are significant risk factors for cardiovascular disease in type 2 diabetes patients. In this study, we tested if and for how many meals a single bout of exercise would reduce PPG responses to subsequent meals in type 2 diabetes (T2D) patients using a continuous glucose monitor system (CGMS). METHODS We recruited nine sedentary (<30 min·wk(-1) of exercise) individuals with T2D (mean ± SD; body mass index = 36.0 ± 1.1 kg·m(-2), age = 60.3 ± 1.0 yr, HbA1c = 6.3% ± 0.2%). The subjects consumed a eucaloric diet (51% carbohydrate, 31% fat, and 18% protein) consisting of three meals, identical in composition, for a 2-d period while wearing a continuous glucose monitor system in two different conditions (exercise [EX], one 60-min bout at 60%-75% of heart rate reserve performed before breakfast), vs a sedentary [SED] condition). We quantified 24-h average glucose, PPG area under the curve (AUC; 4-h glucose AUC after meals), and PPG-2 h (2 h postprandial glucose). RESULTS EX significantly reduced average [glucose] during the first 24-h period (P = 0.03). EX caused a reduction in PPG-AUC (P = 0.02) for all of the meals during the 2 d (main effect between conditions). A comparison between the EX and the SED conditions at each meal revealed that EX reduced PPG-AUC after the second meal of day 1 (lunch) (P = 0.04). PPG-2 h was not significantly different between EX and SED. CONCLUSIONS Although a single EX bout does lower 24-h average [glucose], it only significantly lowered PPG-AUC at the second meal after the bout, suggesting that daily exercise may be needed to most effectively improve PPG at the advent of exercise training in T2D patients.


American Journal of Physiology-endocrinology and Metabolism | 2014

Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis

E. Matthew Morris; Matthew R. Jackman; Ginger C. Johnson; Tzu-Wen Liu; Jordan L. Lopez; Monica L. Kearney; Justin A. Fletcher; Grace M. Meers; Lauren G. Koch; Stephen Britton; R. Scott Rector; Jamal A. Ibdah; Paul S. MacLean; John P. Thyfault

Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation.


Medicine and Science in Sports and Exercise | 2013

Prior Exercise and Postprandial Incretin Responses in Lean and Obese Individuals

Timothy D. Heden; Ying Liu; Monica L. Kearney; Young-Min Park; Kevin C. Dellsperger; Tom R. Thomas; Jill A. Kanaley

PURPOSE The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) help regulate postprandial triacylglycerol (TAG) and insulin concentrations, but the effects of acute aerobic exercise on GLP-1 or GIP responses are unclear. The purpose of this study was to determine whether reductions in postprandial TAG and insulin with exercise are associated with GLP-1 and GIP responses. METHODS Thirteen normal-weight (NW) and 13 obese (Ob) individuals participated in two, 4-d trials in random order including an exercise (EX) and a no exercise (NoEX) trial. Diet was controlled during both trials. The EX trial consisted of 1 h of treadmill walking (55%-60% of V˙O2peak) during the evening of day 3 of the trial, 12 h before a 4-h mixed meal test on day 4, during which frequent blood samples were collected to assess postprandial lipemia, glycemia, insulin, C-peptide, GIP, and GLP-1 responses. Insulin secretion was estimated using the insulinogenic index, and insulin clearance was estimated using the ratio of insulin to C-peptide. RESULTS Postprandial TAG were 29% lower after EX in Ob individuals (P < 0.05) but were not significantly altered in NW individuals (P > 0.05). The drop in postprandial HDL cholesterol was attenuated with EX in Ob individuals (P < 0.05). Insulin responses were 14% lower after EX in Ob individuals (P < 0.05), and this was associated with reduced insulin secretion (P < 0.05), with no change in insulin clearance (P > 0.05). Glucose, C-peptide, GIP, and GLP-1 were not different between trials. CONCLUSION A 1-h bout of moderate-intensity aerobic exercise the night before a mixed meal attenuates TAG and insulin responses in Ob but not NW individuals, an effect not associated with altered GLP-1 or GIP responses.


Medicine and Science in Sports and Exercise | 2014

Impact of various exercise modalities on hepatic mitochondrial function.

Justin A. Fletcher; Grace M. Meers; Melissa A. Linden; Monica L. Kearney; E. Matthew Morris; John P. Thyfault; R. Scott Rector

PURPOSE Hepatic mitochondrial adaptations to exercise are largely unknown. In this study, we sought to determine the effects of various exercise modalities on measures of hepatic mitochondrial function and metabolism. METHODS Male Sprague-Dawley rats were randomly assigned (n = 8-10 per group) into sedentary (SED), voluntary wheel running (VWR), VWR with food pulled during the dark cycle (VMR-OF), treadmill endurance exercise (TM-END; 30 m·min, 12% gradient, 60 min·d, 5 d·wk), or treadmill interval sprint training (TM-IST; 50 m·min, 12% gradient, 6 × 2.5 min bouts, 5 d·wk) groups for a 4-wk intervention. RESULTS Hepatic mitochondrial state 3 and maximal uncoupled respiration were significantly (P < 0.05) increased in all four exercise groups compared with SED animals. In addition, hepatic mitochondrial [1-C] pyruvate oxidation to CO2, an index of pyruvate dehydrogenase (PDH) activity, was significantly increased in VWR-OF, TM-END, and TM-IST rats (P < 0.05), whereas exercise-induced increases in [2-C] pyruvate oxidation and [1-C] palmitate oxidation to CO2 did not reach statistical significance. Hepatic mitochondrial sirtuin 3 protein content, which putatively increases activity of mitochondrial proteins, was elevated in the VWR, VWR-OF, and TM-END groups (P < 0.05). In addition, only VWR-OF animals experienced increases in hepatic cytochrome c protein content and phosphoenolpyruvate carboxykinase mRNA, whereas PGC-1α mRNA expression and phospho-CREB protein content was increased in VWR-OF and TM-END groups. CONCLUSION Four weeks of exercise training, regardless of exercise modality, significantly increased hepatic mitochondrial respiration and evoked other unique improvements in mitochondrial metabolism that do not appear to be dependent on increases in mitochondrial content.


European Journal of Endocrinology | 2013

Liquid meal composition, postprandial satiety hormones, and perceived appetite and satiety in obese women during acute caloric restriction

Timothy D. Heden; Ying Liu; Lauren Sims; Monica L. Kearney; Adam Whaley-Connell; Anand Chockalingam; Kevin C. Dellsperger; Timothy J. Fairchild; Jill A. Kanaley

OBJECTIVE The purpose of this study was to compare postprandial satiety regulating hormone responses (pancreatic polypeptide (PP) and peptide tyrosine tyrosine (PYY)) and visual analog scale- (VAS) assessed perceived appetite and satiety between liquid high-protein (HP) and high-carbohydrate (HC) meals in obese women during acute (24-h) caloric restriction. DESIGN Eleven obese premenopausal women completed two conditions in random order in which they consumed 1500 calories as six 250-calorie HP meals or six 250-calorie HC meals over a 12-h period. Blood samples were taken at baseline and every 20 min thereafter and analyzed for PP and PYY concentrations. At these same points, perceived hunger and fullness were assessed with a VAS. The incremental area under the curve (iAUC) was used to compare postprandial responses. RESULTS The 12-h PP and PYY iAUC were greater (P≤0.05) during the HP condition (PP: 4727±1306 pg/ml×12 h, PYY: 1373±357 pg/ml×12 h) compared with the HC condition (PP: 2300±528 pg/ml×12 h, PYY: 754±246 pg/ml×12 h). Perceived hunger and fullness were not different between conditions (P>0.05). The greatest changes in PYY and perceived fullness occurred after the morning meals during both conditions. CONCLUSIONS These data suggest that in obese women during acute caloric restriction before weight loss, i) liquid HP meals, compared with HC meals, result in greater postprandial PP and PYY concentrations, an effect not associated with differential appetite or satiety responses, and ii) meal-induced changes in PYY and satiety are greatest during the morning period, regardless of dietary macronutrient composition.


Applied Physiology, Nutrition, and Metabolism | 2014

Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

Timothy D. Heden; E. Matthew Morris; Monica L. Kearney; Tzu-Wen Liu; Young-Min Park; Jill A. Kanaley; John P. Thyfault

The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.


Current Diabetes Reviews | 2016

Exercise and Postprandial Glycemic Control in Type 2 Diabetes

Monica L. Kearney; John P. Thyfault

Individuals with type 2 diabetes (T2D) have poor glycemic control which contributes to cardiovascular disease and other diabetic comorbidities. The often relied upon measures of fasting glucose and glycosylated hemoglobin (HbA1c) do not accurately represent glycemic control because they do not reflect what occurs after meals and throughout the day in the free-living condition. An accumulating body of evidence now suggests that postprandial glucose fluctuations are more tightly correlated with microvascular and macrovascular morbidities and cardiovascular mortality than HbA1c or fasting glucose, stagnant measure of glycemia. Thus, effective therapies are needed which will improve not only HbA1c and fasting glucose, but also regulation of postprandial glycemia. Further, testing for glycemic control should employ a challenge that simulates the free-living condition to best determine how glucose is regulated after meals and throughout the day. Unlike medications, which generally have a poor effect at improving postprandial glucose, exercise is effective in reducing postprandial glycemic excursions in as little as a few days. However, how this is accomplished and the optimal prescription for reducing postprandial glycemic excursions and maintaining improvements in postprandial glycemic control have yet to be elucidated. Still further, the utility of a mixed meal test in providing the optimal challenge for detecting exercise-induced changes in postprandial glycemic control has value that warrants further investigation. Thus, the purpose of this review is to summarize the literature regarding exercise in treating postprandial glycemia in T2D and to review strengths and weaknesses in the current methodology for assessing changes in glycemic control.


International Journal of Obesity | 2015

A pilot study examining the effects of consuming a high-protein vs normal-protein breakfast on free-living glycemic control in overweight/obese ‘breakfast skipping’ adolescents

L B Bauer; Leryn J. Reynolds; Steve M Douglas; Monica L. Kearney; Heather A Hoertel; Rebecca Shafer; John P. Thyfault; Heather J. Leidy

To examine whether the daily consumption of normal-protein (NP) vs higher-protein (HP) breakfasts improve free-living glycemic control in overweight/obese, ‘breakfast skipping’ adolescents. Twenty-eight healthy, but overweight, teens (age: 19±1 year; BMI: 29.9±0.8 kg m−2) completed a 12-week randomized parallel-arm study in which the adolescents consumed either a 350 kcal NP breakfast (13 g protein) or HP breakfast (35 g protein). Pre- and post-study 24-h blood glucose measures were assessed using continuous glucose monitoring. Although no main effects of time or group were detected, time by group interactions were observed. Post hoc pairwise comparisons assessing the post–pre changes revealed that the daily consumption of the HP breakfasts tended to reduce the 24-h glucose variability (s.d.) vs NP (−0.17±0.09 vs +0.09±0.10 s.d.; P=0.06) and tended to reduce the time spent above the high glucose limit (−292±118 vs −24±80 min; P=0.09). The consumption of the HP breakfasts also reduced the 24-h maximal (peak) glucose response (−0.94±0.36 vs +0.30±0.18 mmol l−1; P<0.01) and reduced postprandial glucose fluctuations (−0.88±0.44 vs +0.49±0.34 mmol l−1; P<0.03) vs NP. These data suggest that the daily addition of a HP breakfast, containing 35 g of high-quality protein, has better efficacy at improving free-living glycemic control compared with a NP breakfast in overweight/obese, but otherwise healthy, ‘breakfast skipping’ adolescents.

Collaboration


Dive into the Monica L. Kearney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Liu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge