Mónica L. Kotler
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mónica L. Kotler.
Biology of Reproduction | 2007
María Paula Magariños; Víctor Sánchez-Margalet; Mónica L. Kotler; Juan Carlos Calvo; Cecilia L. Varone
Abstract Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by 3H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 μM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 μM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation.
Journal of Pineal Research | 2005
Adela Ana Juknat; María del Valle Armanino Méndez; Ana Quaglino; Cecilia Irene Fameli; Marcela Mena; Mónica L. Kotler
Abstract: During oxidative stress, cell apoptosis is promoted through the mitochondrial death pathway. Increased reactive oxygen species (ROS) are linked to excess cell loss and mediate the induction of apoptosis in various cell types. However, the role of ROS in the apoptotic pathway has not been clearly established. The aims of this study were to investigate the biochemical and morphological responses of rat astrocytes to hydrogen peroxide‐mediated cell death and to define the role that melatonin might play in the apoptotic cascade. Hydrogen peroxide (H2O2; 0.1–1.0 mm) significantly reduced cell viability. Astrocyte death was associated with enhanced ROS production in a dose‐dependent manner, as measured by 2′,7′‐dichloro‐fluorescein fluorescence. H2O2‐induced cell death was found to be mediated through an apoptotic pathway as treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H2O2 also triggered caspase‐3 activation and Bax expression. The ability of different antioxidants to prevent H2O2‐induced apoptosis was examined by pre‐incubating rat astrocytes with N‐acetylcysteine (10 mm), glutathione (0.5 mm) or melatonin (0.1 mm and 10 nm). Results showed that N‐acetylcysteine and glutathion can protect astrocytes against ROS accumulation and caspase‐3 activation, whereas 0.1 mm melatonin can inhibit H2O2‐induced apoptosis by regulating Bax expression and by inhibiting caspase‐3 activation. Antiapoptotic effect of 10 nm melatonin associated to inhibition of Bax expression, give rise to new therapeutic approaches.
Neurochemistry International | 2008
Laura E. Gonzalez; A. Ana Juknat; Andrea J. Venosa; Noemí Verrengia; Mónica L. Kotler
Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.
PLOS ONE | 2014
Agustina Alaimo; Roxana Mayra Gorojod; Juan Beauquis; Manuel Muñoz; Flavia Saravia; Mónica L. Kotler
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.
Neurochemistry International | 2011
Agustina Alaimo; Roxana Mayra Gorojod; Mónica L. Kotler
Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis.
Langmuir | 2010
Manuel J. Llansola Portolés; Pedro M. David Gara; Mónica L. Kotler; Sonia G. Bertolotti; Enrique San Román; Hernán B. Rodríguez; Mónica C. Gonzalez
The effect of molecular oxygen and water on the blue photoluminescence of silicon nanoparticles synthesized by anodic oxidation of silicon wafers and surface functionalized with 2-methyl 2-propenoic acid methyl ester is investigated. The particles of 3 +/- 1 nm diameter and a surface composition of Si(3)O(6)(C(5)O(2)H(8)) exhibit room-temperature luminescence in the wavelength range 300-600 nm upon excitation with 300-400 nm light. The luminescence shows vibronic resolution and high quantum yields in toluene suspensions, while a vibronically unresolved spectrum and lower emission quantum yields are observed in aqueous suspensions. The luminescence intensity, though not the spectrum features, depends on the presence of dissolved O(2). Strikingly, the luminescence decay time on the order of 1 ns does not depend on the solvent or on the presence of O(2). To determine the mechanisms involved in these processes, time-resolved and steady-state experiments are performed. These include low-temperature luminescence, heavy atom effect, singlet molecular oxygen ((1)O(2)) phosphorescence detection, reaction of specific probes with (1)O(2), and determination of O(2) and N(2) adsorption isotherms at 77 K. The results obtained indicate that physisorbed O(2) is capable of quenching nondiffusively the particle luminescence at room temperature. The most probable mechanism for (1)O(2) generation involves the energy transfer from an exciton singlet state to O(2) to yield an exciton triplet of low energy (<0.98 eV) and (1)O(2). In aqueous solutions, excited silicon nanoparticles are able to reduce methylviologen on its surface.
Free Radical Biology and Medicine | 2015
Roxana Mayra Gorojod; Agustina Alaimo; S. Porte Alcon; C Pomilio; F. Saravia; Mónica L. Kotler
Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to be considered in future research concerning Manganism therapies.
Journal of Pineal Research | 2003
Adela Ana Juknat; Mónica L. Kotler; Ana Quaglino; Natalia Marco Carrillo; Tobias Hévor
Abstract: Accumulation of δ‐aminolevulinic acid (ALA), as it occurs in acute intermittent porphyria (AIP), is the origin of an endogenous source of reactive oxygen species (ROS), which can exert oxidative damage to cell structures. In the present work we examined the ability of different antioxidants to revert ALA‐promoted damage, by incubating mouse astrocytes with 1.0 mm ALA for different times (1–4 hr) in the presence of melatonin (2.5 mm), superoxide dismutase (25 units/mL), catalase (200 units/mL) or glutathione (0.5 mm). The defined relative index [(malondialdehyde levels/accumulated ALA) × 100], decreases with incubation time, reaching values of 76% for melatonin and showing that the different antioxidants tested can protect astrocytes against ALA‐promoted lipid peroxidation. Concerning porphyrin biosynthesis, no effect was observed with catalase and superoxide dismutase whereas increases of 57 and 87% were obtained with glutathione and melatonin, respectively, indicating that these antioxidants may prevent the oxidation of porphobilinogen deaminase, reactivating so that the AIP genetically reduced enzyme. Here we showed that ALA induces cell death displaying a pattern of necrosis. This pattern was revealed by loss of cell membrane integrity, marked nuclear swelling and double labeling with annexin V and propidium iodide. In addition, no caspase 3‐like activity was detected. These findings provide the first experimental evidence of the involvement of ALA‐promoted ROS in the damage of proteins related to porphyrin biosynthesis and the induction of necrotic cell death in astrocytes. Interestingly, melatonin decreases the number of enlarged nuclei and shows a protective effect on cellular morphology.
Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology | 1995
Adela Ana Juknat; Mónica L. Kotler; A.M. del C. Batlle
Abstract The response of nerve cells to high exogenous aminolevulinic acid (ALA) concentrations was studied by examining the changes in its uptake and in porphyrin biosynthesis. ALA was shown to be taken up by cerebral cortex particles by a non-saturable process. As opposed to other previously described experimental systems, it was also observed that 84–87% of porphyrins formed was found within the cells. Exposure of cerebral cortex particles to high exogenous ALA (0.8–4.0 mM) showed that ALA can be accumulated in relatively high concentrations in brain cells (21.04 ± 1.05 nmol/mg protein). Under these experimental conditions, porphyrin biosynthesis was found to be markedly inhibited (52%). 2.4 mM ALA caused an initial stimulation of glucose uptake after 1 hr incubation and a later fall to below control values, being consistent with the fact that acute porphyric crisis could be precipitated by the action of ALA on energy metabolism. ALA toxicity could be due both to its accumulation in the cells and to deficient heme concentrations, with an additional effect on glucose metabolism. These findings provide the basis for a useful brain tissue model to investigate the nature of the metabolic mechanisms occurring in acute intermittent porphyria (AIP) patients.
Journal of Neurochemistry | 2011
Laura E. Gonzalez; Mónica L. Kotler; Lucas G. Vattino; Eugenia Conti; Ricardo Reisin; Kirk J. Mulatz; Terrance P. Snutch; Osvaldo D. Uchitel
J. Neurochem. (2011) 119, 826–847.