Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica L. Vetter is active.

Publication


Featured researches published by Monica L. Vetter.


The Journal of Neuroscience | 2008

Progressive Ganglion Cell Degeneration Precedes Neuronal Loss in a Mouse Model of Glaucoma

Brian Buckingham; Denise M. Inman; Wendi S. Lambert; Ericka Oglesby; David J. Calkins; Michael R. Steele; Monica L. Vetter; Nicholas Marsh-Armstrong; Philip J. Horner

Glaucoma is characterized by retinal ganglion cell (RGC) pathology and a progressive loss of vision. Previous studies suggest RGC death is responsible for vision loss in glaucoma, yet evidence from other neurodegenerative diseases suggests axonal degeneration, in the absence of neuronal loss, can significantly affect neuronal function. To characterize RGC degeneration in the DBA/2 mouse model of glaucoma, we quantified RGCs in mice of various ages using neuronal-specific nuclear protein (NeuN) immunolabeling, retrograde labeling, and optic nerve axon counts. Surprisingly, the number of NeuN-labeled RGCs did not decline significantly until 18 months of age, at which time a significant decrease in RGC somal size was also observed. Axon dysfunction and degeneration occurred before loss of NeuN-positive RGCs, because significant declines in RGC number assayed by retrograde tracers and axon counts were observed at 13 months. To examine whether axonal dysfunction/degeneration affected gene expression in RGC axons or somas, NeuN and neurofilament-heavy (NF-H) immunolabeling was performed along with quantitative reverse transcription-PCR for RGC-specific genes in retinas of aged DBA/2 mice. Although these mice had similar numbers of NeuN-positive RGCs, the expression of neurofilament light, Brn-3b, and Sncg mRNA varied; this variation in RGC-specific gene expression was correlated with the appearance of NF-H immunoreactive RGC axons. Together, these data support a progression of RGC degeneration in this model of glaucoma, beginning with loss of retrograde label, where axon dysfunction and degeneration precede neuronal loss. This progression of degeneration suggests a need to examine the RGC axon as a locus of pathology in glaucoma.


Neuron | 1997

XATH5 PARTICIPATES IN A NETWORK OF BHLH GENES IN THE DEVELOPING XENOPUS RETINA

Shami Kanekar; Muriel Perron; Richard I. Dorsky; William A. Harris; Lily Yeh Jan; Yuh Nung Jan; Monica L. Vetter

We examined the function of basic-helix-loop-helix (bHLH) transcription factors during retinal neurogenesis. We identified Xath5, a Xenopus bHLH gene related to Drosophila atonal, which is expressed in the developing Xenopus retina. Targeted expression of Xath5 in retinal progenitor cells biased the differentiation of these cells toward a ganglion cell fate, suggesting that Xath5 can regulate the differentiation of retinal neurons. We examined the relationship between the three bHLH genes Xash3, NeuroD, and Xath5 during retinal neurogenesis and found that Xash3 is expressed in early retinoblasts, followed by coexpression of Xath5 and NeuroD in differentiating cells. We provide evidence that the expression of Xash3, NeuroD, and Xath5 is coupled and propose that these bHLH genes regulate successive stages of neuronal differentiation in the developing retina.


The Journal of Neuroscience | 2008

Retinal Ganglion Cells Downregulate Gene Expression and Lose Their Axons within the Optic Nerve Head in a Mouse Glaucoma Model

Ileana Soto; Ericka Oglesby; Brian Buckingham; Janice L. Son; Elisha D. O. Roberson; Michael R. Steele; Denise M. Inman; Monica L. Vetter; Philip J. Horner; Nicholas Marsh-Armstrong

Little is known about molecular changes occurring within retinal ganglion cells (RGCs) before their death in glaucoma. Taking advantage of the fact that γ-synuclein (Sncg) mRNA is expressed specifically and highly in adult mouse RGCs, we show in the DBA/2J mouse model of glaucoma that there is not only a loss of cells expressing this gene, but also a downregulation of gene expression of Sncg and many other genes within large numbers of RGCs. This downregulation of gene expression within RGCs occurs together with reductions in FluoroGold (FG) retrograde transport. Surprisingly, there are also large numbers of Sncg-expressing cells without any FG labeling, and among these many that have a marker previously associated with disconnected RGCs, accumulation of phosphorylated neurofilaments in their somas. These same diseased retinas also have large numbers of RGCs that maintain the intraocular portion while losing the optic nerve portion of their axons, and these disconnected axons terminate within the optic nerve head. Our data support the view that RGC degeneration in glaucoma has two separable stages: the first involves atrophy of RGCs, whereas the second involves an insult to axons, which causes the degeneration of axon portions distal to the optic nerve head but does not cause the immediate degeneration of intraretinal portions of axons or the immediate death of RGCs.


Investigative Ophthalmology & Visual Science | 2008

Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma

Alejandra Bosco; Denise M. Inman; Michael R. Steele; Guangming Wu; Ileana Soto; Nicholas Marsh-Armstrong; Walter C. Hubbard; David J. Calkins; Philip J. Horner; Monica L. Vetter

PURPOSE In the context of the retinal ganglion cell (RGC) axon degeneration in the optic nerve that occurs in glaucoma, microglia become activated, then phagocytic, and redistribute in the optic nerve head. The authors investigated the potential contribution of retinal microglia activation to glaucoma progression in the DBA/2J chronic mouse glaucoma model. METHODS The authors treated 6-week-old DBA/2J mice for 25 weeks with minocycline, a tetracycline derivative known to reduce microglia activation and to improve neuronal survival in other models of neurodegenerative disease. They quantified RGC numbers and characterized microglia activation, gliosis, and both axonal integrity and retrograde tracer transport by RGCs in mice systemically treated with minocycline or vehicle only. RESULTS Minocycline reduced microglial activation and improved RGC axonal transport and integrity, yet it had no effect on the characteristic age-related ocular changes that lead to chronically elevated pressure and did not alter Müller or astrocyte gliosis. Specifically, minocycline increased the fraction of microglia with resting ramified morphology and reduced levels of Iba1 mRNA and protein, a microglia-specific calcium ligand linked to activation. The reduction in microglial activation was coupled to significant improvement in RGC axonal transport, as measured by neuronal retrograde tracing from the superior colliculus. Finally, minocycline treatment significantly decoupled RGC axon loss from increased intraocular pressure. CONCLUSIONS These observations suggest that in glaucoma, retina and optic nerve head microglia activation may be a factor in the early decline in function of the optic nerve and its subsequent degeneration.


Neuron | 2005

Frizzled 5 Signaling Governs the Neural Potential of Progenitors in the Developing Xenopus Retina

Terence J. Van Raay; Kathryn B. Moore; Ilina Iordanova; Michael R. Steele; Milan Jamrich; William A. Harris; Monica L. Vetter

Progenitors in the developing central nervous system acquire neural potential and proliferate to expand the pool of precursors competent to undergo neuronal differentiation. The formation and maintenance of neural-competent precursors are regulated by SoxB1 transcription factors, and evidence that their expression is regionally regulated suggests that specific signals regulate neural potential in subdomains of the developing nervous system. We show that the frizzled (Fz) transmembrane receptor Xfz5 selectively governs neural potential in the developing Xenopus retina by regulating the expression of Sox2. Blocking either Xfz5 or canonical Wnt signaling within the developing retina inhibits Sox2 expression, reduces cell proliferation, inhibits the onset of proneural gene expression, and biases individual progenitors toward a nonneural fate, without altering the expression of multiple progenitor markers. Blocking Sox2 function mimics these effects. Rescue experiments indicate that Sox2 is downstream of Xfz5. Thus, Fz signaling can regulate the neural potential of progenitors in the developing nervous system.


The Journal of Comparative Neurology | 2011

Early microglia activation in a mouse model of chronic glaucoma.

Alejandra Bosco; Michael R. Steele; Monica L. Vetter

Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb+/SjJ (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression. J. Comp. Neurol. 519:599–620, 2011.


Neuron | 2002

Posttranslational Mechanisms Control the Timing of bHLH Function and Regulate Retinal Cell Fate

Kathryn B. Moore; Meredith L. Schneider; Monica L. Vetter

During central nervous system development, neurons are often born in a precise temporal sequence. Basic helix-loop-helix (bHLH) transcription factors are required for the development of specific subpopulations of neurons, but how they contribute to their ordered genesis is unclear. We show that the ability of bHLH factors to regulate the development of distinct neuronal subtypes in the Xenopus retina depends upon the timing of their function. In addition, we find that the timing of bHLH function can be regulated posttranslationally, so that bHLH factors with overlapping expression can function independently. Specifically, XNeuroD function in the retina can be inhibited by glycogen synthase kinase 3beta (GSK3beta), while Xath5 function can be inhibited by Notch. Thus, the potential of bHLH factors to regulate the development of neuronal subtypes depends upon the context in which they function.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Regulation of eye development by frizzled signaling in Xenopus

Jennifer T. Rasmussen; Matthew A. Deardorff; Change Tan; Mahendra S. Rao; Peter S. Klein; Monica L. Vetter

Eye development in both invertebrates and vertebrates is regulated by a network of highly conserved transcription factors. However, it is not known what controls the expression of these factors to regulate early eye formation and whether transmembrane signaling events are involved. Here we establish a role for signaling via a member of the frizzled family of receptors in regulating early eye development. We show that overexpression of Xenopus frizzled 3 (Xfz3), a receptor expressed during normal eye development, functions cell autonomously to promote ectopic eye formation and can perturb endogenous eye development. Ectopic eyes obtained with Xfz3 overexpression have a laminar organization similar to that of endogenous eyes and contain differentiated retinal cell types. Ectopic eye formation is preceded by ectopic expression of transcription factors involved in early eye development, including Pax6, Rx, and Otx2. Conversely, targeted overexpression of a dominant-negative form of Xfz3 (Nxfz3), consisting of the soluble extracellular domain of the receptor, results in suppression of endogenous Pax6, Rx, and Otx2 expression and suppression of endogenous eye development. This effect can be rescued by coexpression of Xfz3. Finally, overexpression of Kermit, a protein that interacts with the C-terminal intracellular domain of Xfz3, also blocks endogenous eye development, suggesting that signaling through Xfz3 or a related receptor is required for normal eye development. In summary, we show that frizzled signaling is both necessary and sufficient to regulate eye development in Xenopus.


Development | 2009

A directional Wnt/β-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina

Michalis Agathocleous; Ilina Iordanova; Minde I. Willardsen; Xiao Yan Xue; Monica L. Vetter; William A. Harris; Kathryn B. Moore

Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.


Developmental Neuroscience | 2004

Wnt/Frizzled Signaling during Vertebrate Retinal Development

Terence J. Van Raay; Monica L. Vetter

Multiple signaling pathways are known to be involved in regulating development of the vertebrate neural retina. Recent publications have demonstrated that Wnt/Frizzled (Fz) signaling components are expressed in the developing retina and may play a fundamental role in retinogenesis. In this review, we summarize Wnt/Fz expression patterns in the developing vertebrate retina, mainly from chick and mouse, and compare them with Wnt/β-catenin reporter activity. Consistent with the dynamic expression patterns of Wnt pathway components, evidence suggests that Wnt/Fz signaling has multiple roles during retinal development.

Collaboration


Dive into the Monica L. Vetter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Calkins

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Denise M. Inman

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge