Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Mainigi is active.

Publication


Featured researches published by Monica Mainigi.


Diabetologia | 2015

Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice

Isaac Sasson; Alexa P. Vitins; Monica Mainigi; Kelle H. Moley; Rebecca A. Simmons

Aims/hypothesisMaternal obesity is associated with an increased risk of obesity and impaired glucose homeostasis in offspring. However, it is not known whether a gestational or pre-gestational exposure confers similar risks, and if so, what the underlying mechanisms are.MethodsWe used reciprocal two-cell embryo transfers between mice fed either a control or high-fat diet (HFD) starting at the time of weaning. Gene expression in placenta was assessed by microarray analyses.ResultsA pre-gestational exposure to a maternal HFD (HFD/control) impaired fetal and placental growth despite a normal gestational milieu. Expression of imprinted genes and genes regulating vasculogenesis and lipid metabolism was markedly altered in placenta of HFD/control. An exposure to an HFD (control/HFD) only during gestation also resulted in fetal growth restriction and decreased placental weight. Interestingly, only a gestational exposure to an HFD (control/HFD) resulted in obesity and impaired glucose tolerance in adulthood.Conclusions/interpretationAn HFD during pregnancy has profound consequences for the offspring later in life. Our data demonstrate that the mechanism underlying this phenomenon is not related to placental dysfunction, intrauterine growth restriction or postnatal weight gain, but rather an inability of the progeny to adapt to the abnormal gestational milieu of an HFD. Thus, the ability to adapt to an adverse intrauterine environment is conferred prior to pregnancy and it is possible that the effects of a maternal HFD may be transmitted to subsequent generations.


Human Molecular Genetics | 2015

The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model

Eric de Waal; Lisa A. Vrooman; Erin Fischer; Teri Ord; Monica Mainigi; Christos Coutifaris; Richard M. Schultz; Marisa S. Bartolomei

Assisted reproductive technologies (ART) are associated with several complications including low birth weight, abnormal placentation and increased risk for rare imprinting disorders. Indeed, experimental studies demonstrate ART procedures independent of existing infertility induce epigenetic perturbations in the embryo and extraembryonic tissues. To test the hypothesis that these epigenetic perturbations persist and result in adverse outcomes at term, we assessed placental morphology and methylation profiles in E18.5 mouse concepti generated by in vitro fertilization (IVF) in two different genetic backgrounds. We also examined embryo transfer (ET) and superovulation procedures to ascertain if they contribute to developmental and epigenetic effects. Increased placental weight and reduced fetal-to-placental weight ratio were observed in all ART groups when compared with naturally conceived controls, demonstrating that non-surgical embryo transfer alone can impact placental development. Furthermore, superovulation further induced overgrowth of the placental junctional zone. Embryo transfer and superovulation defects were limited to these morphological changes, as we did not observe any differences in epigenetic profiles. IVF placentae, however, displayed hypomethylation of imprinting control regions of select imprinted genes and a global reduction in DNA methylation levels. Although we did not detect significant differences in DNA methylation in fetal brain or liver samples, rare IVF concepti displayed very low methylation and abnormal gene expression from the normally repressed allele. Our findings suggest that individual ART procedures cumulatively increase placental morphological abnormalities and epigenetic perturbations, potentially causing adverse neonatal and long-term health outcomes in offspring.


Clinical Epigenetics | 2015

DNA methylation differences between in vitro - and in vivo -conceived children are associated with ART procedures rather than infertility

Sisi Song; Jayashri Ghosh; Monica Mainigi; Nahid Turan; R.S. Weinerman; May M. Truongcao; Christos Coutifaris; Carmen Sapienza

BackgroundWe, and others, have demonstrated previously that there are differences in DNA methylation and transcript levels of a number of genes in cord blood and placenta between children conceived using assisted reproductive technologies (ART) and children conceived in vivo. The source of these differences (the effect of ART versus the underlying infertility) has never been determined in humans. In this study, we have attempted to resolve this issue by comparing placental DNA methylation levels at 37 CpG sites in 16 previously identified candidate genes in independent populations of children conceived in vivo (‘fertile control’ group) with ART children conceived from two groups: either autologous oocytes with infertility in one or both parents (‘infertile ART’ group) or donor oocytes (obtained from young fertile donors) without male infertility (‘donor oocyte ART’ group).ResultsOf the 37 CpG sites analyzed, significant differences between the three groups were found in 11 CpGs (29.73 %), using ANOVA. Tukey’s post hoc test on the significant results indicated that seven (63.63 %) of these differences were significant between the donor oocyte ART and fertile control groups. In addition, 20 of the 37 CpGs analyzed had been identified as differentially methylated between ART and fertile control groups in an independent population in a prior study. Of these 20 CpG sites, 9 also showed significant differences in the present population. An additional 9 CpGs were found to be significantly different between the two groups. Of these 18 candidate CpGs, 12 CpGs (in seven candidate genes) also showed significant differences in placental DNA methylation levels between the donor oocyte ART and fertile control groups.ConclusionsThese data suggest strongly that the DNA methylation differences observed between ART and in vivo conceptions are associated with some aspect of ART protocols, not simply the underlying infertility.


Biology of Reproduction | 2014

Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth

Monica Mainigi; Devvora Olalere; Irina Burd; Carmen Sapienza; Marisa S. Bartolomei; Christos Coutifaris

ABSTRACT Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes.


Reproductive Biology and Endocrinology | 2008

Steroid hormone regulation of EMP2 expression and localization in the endometrium

Madhuri Wadehra; Monica Mainigi; Shawn A. Morales; Rajiv G. Rao; Lynn K. Gordon; Carmen J. Williams; Jonathan Braun

BackgroundThe tetraspan protein epithelial membrane protein-2 (EMP2), which mediates surface display of diverse proteins, is required for endometrial competence in blastocyst implantation, and is uniquely correlated with poor survival from endometrial adenocarcinoma tumors. Because EMP2 is differentially expressed in the various stages of the murine and human estrous cycle, we tested the hypothesis that the steroid hormones progesterone and estrogen influence EMP2 expression and localization.MethodsFrozen human proliferative and secretory endometrium were collected and analyzed for EMP2 expression using SDS-PAGE/Western blot analysis. The response of EMP2 to progesterone and estradiol was determined using a combination of real-time PCR, SDS-PAGE/Western blot analysis, and confocal immunofluorescence in the human endometrial carcinoma cell line RL95-2. To confirm the in vitro results, ovariectomized mice were treated with progesterone or estradiol, and EMP2 expression was analyzed using immunohistochemistry.ResultsWithin normal human endometrium, EMP2 expression is upregulated in the secretory phase relative to the proliferative phase. To understand the role of steroid hormones on EMP2 expression, we utilized RL95-2 cells, which express both estrogen and progesterone receptors. In RL95-2 cells, both estradiol and progesterone induced EMP2 mRNA expression, but only progesterone induced EMP2 protein expression. To compare steroid hormone regulation of EMP2 between humans and mice, we analyzed EMP2 expression in ovarectomized mice. Similar to results observed in humans, progesterone upregulated endometrial EMP2 expression and induced EMP2 translocation to the plasma membrane. Estradiol did not promote translocation to the cell surface, but moderately induced EMP2 expression in cytoplasmic compartments in vivo.ConclusionThese findings suggest that targeting of EMP2 to specific locations under the influence of these steroid hormones may be important for integrating the molecular responses required for implantation competence.


Clinical Epigenetics | 2017

Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies

Jayashri Ghosh; Christos Coutifaris; Carmen Sapienza; Monica Mainigi

BackgroundWe analyzed placental DNA methylation levels at repeated sequences (LINE1 elements) and all CCGG sites (the LUMA assay) to study the effect of modifiable clinical or laboratory procedures involved in in vitro fertilization. We included four potential modifiable factors: oxygen tension during embryo culture, fresh embryo transfer vs frozen embryo transfer, intracytoplasmic sperm injection (ICSI) vs conventional insemination or day 3 embryo transfer vs day 5 embryo transfer.ResultsGlobal methylation levels differed between placentas from natural conceptions compared to placentas conceived by IVF. Placentas from embryos cultured at 20% oxygen showed significant differences in LINE1 methylation compared to in vivo conceptions, while those from embryos cultured at 5% oxygen, did not have significant differences. In addition, placentas from fresh embryo transfer had significantly different LINE1 methylation compared to placentas from in vivo conceptions, while embryos resulting from frozen embryos were not significantly different from controls. On sex-stratified analysis, only males had significant methylation differences at LINE1 elements stratified for the modifiable factors. As expected, LINE1 methylation was significantly different between males and females in the control population. However, we did not observe sex-specific differences in the IVF group. We validated this sex-specific observation in an additional cohort and in opposite sex IVF twins.ConclusionWe show that two clinically modifiable factors (embryo culture in 5 vs 20% oxygen tension and fresh vs frozen embryo transfer) are associated with global placental methylation differences. Interestingly, males appear more vulnerable to such treatment-related global changes in DNA methylation than do females.


Biology of Reproduction | 2015

Maternal SIN3A Regulates Reprogramming of Gene Expression During Mouse Preimplantation Development

Richard Jimenez; Eduardo O. Melo; Olga Davydenko; Jun Ma; Monica Mainigi; Vedran Franke; Richard M. Schultz

ABSTRACT The oocyte-to-embryo transition entails genome activation and a dramatic reprogramming of gene expression that is required for continued development. Superimposed on genome activation and reprogramming is development of a transcriptionally repressive state at the level of chromatin structure. Inducing global histone hyperacetylation relieves this repression and histone deacetylases 1 and 2 (HDAC1 and HDAC2) are involved in establishing the repressive state. Because SIN3A is an HDAC1/2-containing complex, we investigated whether it is involved in reprogramming gene expression during the course of genome activation. We find that Sin3a mRNA is recruited during maturation and that inhibiting its recruitment not only inhibits development beyond the 2-cell stage but also compromises the fidelity of reprogramming gene expression. The SIN3A that is synthesized during oocyte maturation reaches a maximum level in the mid-1-cell embryo and is essentially absent by the mid-2-cell stage. Overexpressing SIN3A in 1-cell embryos has no obvious effect on pre- and postimplantation development. These results provide a mechanism by which reprogramming can occur using a maternally inherited transcription machinery, namely, recruitment of mRNAs encoding transcription factors and chromatin remodelers, such as SIN3A.


Biology of Reproduction | 2011

Meiotic and Developmental Competence in Mice Are Compromised Following Follicle Development In Vitro Using an Alginate-Based Culture System

Monica Mainigi; Teri Ord; Richard M. Schultz

Culture systems that support development and maturation of oocytes in vitro with a high efficiency would have great impact not only on research addressed at underlying mechanisms of oocyte development but also on preservation of fertility. Recently, attention has turned to using culture systems that preserve follicle integrity, in contrast to existing systems that do not maintain follicle integrity, with the hope of improving oocyte development. We report that an alginate-based follicle culture system supports both follicular and oocyte growth in vitro, with little effect on the oocyte transcriptome. Nevertheless, oocytes obtained from these follicles exhibit an increased incidence of defects in spindle formation and chromosome alignment as well as pronounced abnormalities in cortical granule biogenesis. Developmental competence is also highly compromised, because few matured oocytes develop into 1-cell embryos with pronuclei. This situation contrasts with a high incidence of pronuclear formation following development using an existing in vitro culture system that does not preserve follicle integrity.


Biology of Reproduction | 2016

Morphokinetic Evaluation of Embryo Development in a Mouse Model: Functional and Molecular Correlates

R.S. Weinerman; Rui Feng; Teri Ord; Richard M. Schultz; Marisa S. Bartolomei; Christos Coutifaris; Monica Mainigi

ABSTRACT Although time-lapse analysis of early embryo cleavage parameters (morphokinetics) predicts blastocyst development, it has not been definitively linked to establishing pregnancy and live birth. For example, a direct comparison of the developmental potential of embryos with optimal kinetic parameters compared to suboptimal kinetics has not been performed with human embryos. To ascertain whether such a linkage exists, we developed a mouse model of morphokinetic analysis of early embryo cleavage using time-lapse microscopy to predict blastocyst formation and tested whether cleavage parameters predict pregnancy outcome by transferring morphokinetically optimal and suboptimal embryos into a single host. Using classification and regression trees, we established that the timing of the second and third mitotic divisions (division from two to three and three to four cells, respectively) predicts blastocyst development in the mouse. Using this prediction model, we found that the incidence of sustained implantation at mid-gestation was significantly higher for the optimal compared to suboptimal embryos. In addition, the incidence of resorption among implanted embryos was significantly higher in the suboptimal compared to the optimal group. Transcript profiling of optimal and suboptimal embryos revealed minimal differences between the two groups, suggesting that time-lapse imaging of early embryo cleavage events provides additional information regarding developmental competence apart from gene expression.


Reproductive Sciences | 2016

Peri-Implantation Hormonal Milieu Elucidating Mechanisms of Adverse Neurodevelopmental Outcomes

Monica Mainigi; Jason M. Rosenzweig; Jun Lei; Virginia Mensah; Lauren Thomaier; C. Conover Talbot; Devvora Olalere; Teri Ord; Rayyan Rozzah; Michael V. Johnston; Irina Burd

While live births resulting from assisted reproductive technology (ART) exceed 1% of total births annually, the effect of ART on fetal development is not well understood. Data have demonstrated that IVF leads to alterations in DNA methylation and gene expression in the placenta that may have long-term effects on health and disease. Studies have linked adverse neurodevelopmental outcomes to ART, although human studies are inconclusive. In order to isolate the peri-implantation environment and its effects on brain development, we utilized a mouse model with and without superovulation and examined the effect of adult behavior as well as adult cortical neuronal density. Adult offspring of superovulated dams showed increased anxiety-like behavior compared to offspring of naturally mated dams (P < .05). There was no difference in memory and learning tests between the 2 groups. The adult brains from offspring of superovulated recipients had fewer neurons per field compared to naturally mated control offspring (P < .05). In order to examine potential pathways leading to these changes, we measured messenger RNA and microRNA (miRNA) expression in fetal brains at E18.5. Microarray analysis found that miRNAs miR-122, miR-144, and miR-211, involved in regulation of neuronal migration and differentiation, were downregulated in brains of offspring exposed to a superovulated environment(P < .05). There was also altered expression of genes involved in neuronal development. These results suggest that the peri-implantation environment can affect neurodevelopment and can lead to behavioral changes in adulthood. Human studies with long-term follow-up of children from ART are necessary to further investigate the influence of ART on the offspring.

Collaboration


Dive into the Monica Mainigi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teri Ord

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

R.S. Weinerman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Senapati

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Feng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew VerMilyea

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge