Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Misra is active.

Publication


Featured researches published by Monica Misra.


Nature Biotechnology | 2008

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).

Diego Martinez; Randy M. Berka; Bernard Henrissat; Markku Saloheimo; Mikko Arvas; Scott E. Baker; Jarod Chapman; Olga Chertkov; Pedro M. Coutinho; Dan Cullen; Etienne Danchin; Igor V. Grigoriev; Paul Harris; Melissa Jackson; Christian P. Kubicek; Cliff Han; Isaac Ho; Luis F. Larrondo; Alfredo Lopez de Leon; Jon K. Magnuson; Sandy Merino; Monica Misra; Beth Nelson; Nicholas H. Putnam; Barbara Robbertse; Asaf Salamov; Monika Schmoll; Astrid Terry; Nina Thayer; Ann Westerholm-Parvinen

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

Diego Martinez; Jean F. Challacombe; Ingo Morgenstern; David S. Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Ángel T. Martínez; Phil Kersten; Kenneth E. Hammel; Amber Vanden Wymelenberg; Jill Gaskell; Erika Lindquist; Grzegorz Sabat; Sandra Splinter BonDurant; Luis F. Larrondo; Paulo Canessa; Rafael Vicuña; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; Antonio G. Pisabarro; José L. Lavín; José A. Oguiza; Emma R. Master; Bernard Henrissat; Pedro M. Coutinho; Paul Harris; Jon K. Magnuson

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Genome Biology | 2011

Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

Christian P. Kubicek; Alfredo Herrera-Estrella; Diego Martinez; Irina S. Druzhinina; Michael R. Thon; Susanne Zeilinger; Sergio Casas-Flores; Benjamin A. Horwitz; Prasun K. Mukherjee; Mala Mukherjee; László Kredics; Luis David Alcaraz; Andrea Aerts; Zsuzsanna Antal; Lea Atanasova; Mayte Guadalupe Cervantes-Badillo; Jean F. Challacombe; Olga Chertkov; Kevin McCluskey; Fanny Coulpier; Nandan Deshpande; Hans von Döhren; Daniel J. Ebbole; Edgardo U. Esquivel-Naranjo; Erzsébet Fekete; Michel Flipphi; Fabian Glaser; Elida Yazmín Gómez-Rodríguez; Sabine Gruber; Cliff Han

BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.


Journal of Bacteriology | 2006

Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis

Cliff Han; Gary Xie; Jean F. Challacombe; Michael R. Altherr; Smriti S. Bhotika; David Bruce; Connie S. Campbell; Mary L. Campbell; Jin Chen; Olga Chertkov; Cathy Cleland; Mira Dimitrijevic; Norman A. Doggett; John J. Fawcett; Tijana Glavina; Lynne Goodwin; Karen K. Hill; Penny Hitchcock; Paul J. Jackson; Paul Keim; Avinash Ramesh Kewalramani; Jon Longmire; Susan Lucas; Stephanie Malfatti; Kim McMurry; Linda Meincke; Monica Misra; Bernice L. Moseman; Mark Mundt; A. Christine Munk

Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.


Applied and Environmental Microbiology | 2007

Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii

Gary Xie; David Bruce; Jean F. Challacombe; Olga Chertkov; John C. Detter; Paul Gilna; Cliff Han; Susan Lucas; Monica Misra; Gerald L. Myers; Paul G. Richardson; Roxanne Tapia; Nina Thayer; Linda S. Thompson; Thomas Brettin; Bernard Henrissat; David B. Wilson; Mark J. McBride

ABSTRACT The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-β-1,4-glucanases and β-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.


Journal of Bacteriology | 2007

Complete Genome Sequence of Haemophilus somnus (Histophilus somni) Strain 129Pt and Comparison to Haemophilus ducreyi 35000HP and Haemophilus influenzae Rd

Jean F. Challacombe; Alison J. Duncan; Thomas Brettin; David Bruce; Olga Chertkov; J. Chris Detter; Cliff Han; Monica Misra; Paul G. Richardson; Roxanne Tapia; Nina Thayer; Gary Xie; Thomas J. Inzana

Haemophilus somnus can be either a commensal of bovine mucosal surfaces or an opportunistic pathogen. Pathogenic strains of H. somnus are a significant cause of systemic disease in cattle. We report the genome sequence of H. somnus 129Pt, a nonpathogenic commensal preputial isolate, and the results of a genome-wide comparative analysis of H. somnus 129Pt, Haemophilus influenzae Rd, and Haemophilus ducreyi 35000HP. We found unique genes in H. somnus 129Pt involved in lipooligosaccharide biosynthesis, carbohydrate uptake and metabolism, cation transport, amino acid metabolism, ubiquinone and menaquinone biosynthesis, cell surface adhesion, biosynthesis of cofactors, energy metabolism, and electron transport. There were also many genes in common among the three organisms. Our comparative analyses of H. somnus 129Pt, H. influenzae Rd, and H. ducreyi 35000HP revealed similarities and differences in the numbers and compositions of genes involved in metabolism, host colonization, and persistence. These results lay a foundation for research on the host specificities and niche preferences of these organisms. Future comparisons between H. somnus 129Pt and virulent strains will aid in the development of protective strategies and vaccines to protect cattle against H. somnus disease.


Standards in Genomic Sciences | 2011

Complete genome sequence of Cellulophaga algicola type strain (IC166 T )

Birte Abt; Megan Lu; Monica Misra; Cliff Han; Matt Nolan; Susan Lucas; Nancy Hammon; Shweta Deshpande; Jan Fang Cheng; Roxane Tapia; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Ioanna Pagani; Natalia Ivanova; Konstantinos Mavromatis; Galina Ovchinikova; Amrita Pati; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; John C. Detter; Evelyne Brambilla; Manfred Rohde; Brian J. Tindall; Markus Göker; Tanja Woyke

Cellulophaga algicola Bowman 2000 belongs to the family Flavobacteriaceae within the phylum ‘Bacteroidetes’ and was isolated from Melosira collected from the Eastern Antarctic coastal zone. The species is of interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides with temperature optima of 20–30°C. This is the first completed genome sequence of a member of the genus Cellulophaga. The 4,888,353 bp long genome with its 4,285 protein-coding and 62 RNA genes consists of one circular chromosome and is a part of the GenomicEncyclopedia ofBacteria andArchaea project.


Standards in Genomic Sciences | 2012

Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4T)

Alex Copeland; Xiaojing Zhang; Monica Misra; Alla Lapidus; Matt Nolan; Susan Lucas; Shweta Deshpande; Jan Fang Cheng; Roxanne Tapia; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Ioanna Pagani; Natalia Ivanova; Natalia Mikhailova; Amrita Pati; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Chongle Pan; Cynthia D. Jeffries; John C. Detter; Evelyne Brambilla; Manfred Rohde; Olivier Duplex Ngatchou Djao; Markus Göker; Johannes Sikorski; Brian J. Tindall; Tanja Woyke

Runella slithyformis Larkin and Williams 1978 is the type species of the genus Runella, which belongs to the Cytophagaceae, a family that was only recently classified to the order Cytophagales in the class Cytophagia. The species is of interest because it is able to grow at temperatures as low as 4°C. This is the first completed genome sequence of a member of the genus Runella and the sixth sequence from the family Cytophagaceae. The 6,919,729 bp long genome consists of a 6.6 Mbp circular genome and five circular plasmids of 38.8 to 107.0 kbp length, harboring a total of 5,974 protein-coding and 51 RNA genes and is a part of the GenomicEncyclopedia ofBacteria andArchaea project.


Standards in Genomic Sciences | 2013

Complete genome sequence of Halorhodospira halophila SL1

Jean F. Challacombe; Sophia Majid; Ratnakar Deole; Thomas Brettin; David Bruce; Susana F. Delano; John C. Detter; Cheryl D. Gleasner; Cliff Han; Monica Misra; Krista G. Reitenga; Natalia Mikhailova; Tanja Woyke; Sam Pitluck; Matt Nolan; Miriam Land; Elizabeth Saunders; Roxanne Tapia; Alla Lapidus; Natalia Ivanova; Wouter D. Hoff

Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.


Standards in Genomic Sciences | 2010

Complete genome sequence of Segniliparus rotundus type strain (CDC 1076 T )

Johannes Sikorski; Alla Lapidus; Alex Copeland; Monica Misra; Tijana Glavina del Rio; Matt Nolan; Susan Lucas; Feng Chen; Hope Tice; Jan Fang Cheng; Marlen Jando; Susanne Schneider; David Bruce; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Natalia Mikhailova; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Amy Chen; Krishna Palaniappan; Olga Chertkov; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; Thomas Brettin; John C. Detter; Cliff Han

Segniliparus rotundus Butler 2005 is the type species of the genus Segniliparus, which is currently the only genus in the corynebacterial family Segniliparaceae. This family is of large interest because of a novel late-emerging genus-specific mycolate pattern. The type strain has been isolated from human sputum and is probably an opportunistic pathogen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Segniliparaceae. The 3,157,527 bp long genome with its 3,081 protein-coding and 52 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.

Collaboration


Dive into the Monica Misra's collaboration.

Top Co-Authors

Avatar

Cliff Han

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan Lucas

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Olga Chertkov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jean F. Challacombe

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Bruce

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sam Pitluck

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge