Monica Neagu
University of Bucharest
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica Neagu.
Archives of Toxicology | 2017
Monica Neagu; Zoi Piperigkou; Konstantina Karamanou; Ayse Basak Engin; Anca Oana Docea; Carolina Constantin; Carolina Negrei; Dragana Nikitovic; Aristidis M. Tsatsakis
Abstract With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein “bio-corona.” The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle’s physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.
Expert Review of Molecular Diagnostics | 2011
Radu Albulescu; Monica Neagu; Lucian Albulescu; Cristiana Tanase
Digestive cancers (e.g., gastric, colorectal, pancreatic or hepatocarcinoma) are among the most frequently reported cancers in the world, and are characterized by invasivity, metastatic potential and poor outcomes. This group includes some of the most critical cancers (among them, are those ranked second to forth in cancer-related mortality) and, despite all sustained efforts, they maintain a profile of low survival rates and lack successful therapies. Discovery of biomarkers that improve disease characterization may make optimized or personalized therapy possible. Novel biomarkers are expected to provide, hopefully, less-invasive or noninvasive diagnostic tools that make possible earlier detection of disease. Also, they may provide a more reliable selection instrument in the drug discovery process. miRNAs, short noncoding RNAs, have emerged in the last few years as significant regulators of cellular activities, controlling protein expression at the post-transcriptional level, with a significant implication in pathology in general and, of most relevance, in cancers. Deregulation of miRNA expression levels and some genetic alterations were demonstrated in various cancers, including digestive cancers. Investigations in tissue samples have provided a considerable amount of knowledge, identifying altered expressions of miRNAs associated with tumorigenesis and tumor progression. Overexpression of some tumor-inducing or tumor-promoting miRNAs was demonstrated, as well as the downregulation of tumor-suppressor miRNAs. Both individual miRNAs, as well as sets of multiple miRNAs, were set up as candidate biomarkers for diagnostics or monitoring, offering relevant insights into tumorigenic mechanisms. Circulating miRNAs were demonstrated as valuable instruments in tumor diagnosis and the prognosis of digestive cancers (affecting the esophagus, stomach, intestine, colorectum, liver and pancreas), and are being investigated thoroughly in order to generate and validate less-invasive diagnostic tools with enhanced sensitivity.
Journal of Cellular and Molecular Medicine | 2013
Maria Linda Cruceru; Monica Neagu; Jean-Baptiste Demoulin; Stefan N. Constantinescu
Despite intense efforts to identify cancer‐initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer‐initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer‐initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation.
Human & Experimental Toxicology | 2017
Aristidis M. Tsatsakis; Demetrios Kouretas; Manolis Tzatzarakis; Polychronis Stivaktakis; K Tsarouhas; Kirill S. Golokhvast; Valerii N. Rakitskii; Victor A. Tutelyan; Antonio F. Hernández; Ramin Rezaee; Gyuhwa Chung; Concettina Fenga; Ayse Basak Engin; Monica Neagu; Andreea Letitia Arsene; Anca Oana Docea; Eliza Gofita; Daniela Calina; Ioannis Taitzoglou; Jyrki Liesivuori; Aw Hayes; S Gutnikov; Christina Tsitsimpikou
In real life, consumers are exposed to complex mixtures of chemicals via food, water and commercial products consumption. Since risk assessment usually focuses on individual compounds, the current regulatory approach doesn’t assess the overall risk of chemicals present in a mixture. This study will evaluate the cumulative toxicity of mixtures of different classes of pesticides and mixtures of different classes of pesticides together with food additives (FAs) and common consumer product chemicals using realistic doses after long-term exposure. Groups of Sprague Dawley (CD-SD) rats (20 males and 20 females) will be treated with mixtures of pesticides or mixtures of pesticides together with FAs and common consumer product chemicals in 0.0, 0.25 × acceptable daily intake (ADI)/tolerable daily intake (TDI), ADI/TDI and 5 × ADI/TDI doses for 104 weeks. All animals will be examined every day for signs of morbidity and mortality. Clinical chemistry hematological parameters, serum hormone levels, biomarkers of oxidative stress, cardiotoxicity, genotoxicity, urinalysis and echocardiographic tests will be assessed periodically at 6 month intervals. At 3-month intervals, ophthalmological examination, test for sensory reactivity to different types of stimuli, together with assessment of learning abilities and memory performance of the adult and ageing animals will be conducted. After 24 months, animals will be necropsied, and internal organs will be histopathologically examined. If the hypothesis of an increased risk or a new hazard not currently identified from cumulative exposure to multiple chemicals was observed, this will provide further information to public authorities and research communities supporting the need of replacing current single-compound risk assessment by a more robust cumulative risk assessment paradigm.
Advances in Clinical Chemistry | 2010
Cristiana Tanase; Monica Neagu; Radu Albulescu; Mihail Eugen Hinescu
Pancreatic cancer represents a major challenge for research studies and clinical management. No specific tumor marker for the diagnosis of pancreatic cancer exists. Therefore, extensive genomic, transcriptomic, and proteomic studies are being developed to identify candidate markers for use in high-throughput systems capable of large cohort screening. Understandably, the complex pathophysiology of pancreatic cancer requires sensitive and specific biomarkers that can improve both early diagnosis and therapeutic monitoring. The lack of a single diagnostic marker makes it likely that only a panel of biomarkers is capable of providing the appropriate combination of high sensitivity and specificity. Biomarker discovery using novel technology can improve prognostic upgrading and pinpoint new molecular targets for innovative therapy.
Oncology Reports | 2016
Monica Neagu; Constantin Caruntu; Carolina Constantin; Daniel Boda; Sabina Zurac; Demetrios A. Spandidos; Aristidis M. Tsatsakis
Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology.
Expert Review of Molecular Diagnostics | 2010
Monica Neagu; Carolina Constantin; Cristiana Tanase
Skin melanoma, a life-threatening disease, has a recently reported worldwide increase in incidence, despite primary prevention. Skin melanoma statistics emphasize the need for finding markers related to the immune response of the host. The mechanisms that are able to over-power the local immune surveillance comprise molecules that can be valuable markers for diagnosis and prognosis. This article summarizes the immune markers that can monitor the disease stage and evaluate the efficacy of therapeutic interventions. Recent data regarding immunotherapy are presented in the context of tumor escape from immune surveillance and the immune molecules that are both targets and a means of monitoring. Perspectives for developing immune interventions for skin melanoma management and the position of tissue or soluble immune markers as a diagnostic/prognostic panel are evaluated. State-of-the-art technology is emphasized for developing immune molecular signatures for a complex characterization of the patient’s immunological status.
Particle and Fibre Toxicology | 2017
Ayse Basak Engin; Dragana Nikitovic; Monica Neagu; Petra Henrich-Noack; Anca Oana Docea; Mikhail I. Shtilman; Kirill S. Golokhvast; Aristidis M. Tsatsakis
Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.
Current Proteomics | 2013
Amanda Bulman; Monica Neagu; Carolina Constantin
This review will focus on the elements of the skin’s immune system, immune cells and/or non-immune cells that support immune mechanisms, molecules with immune origin and/or immune functions that are involved in skin carcinogenesis. All these immune elements are compulsory in the development of skin tumors and/or sustainability of the neoplastic process. In this light, recent data gathered in this review will acknowledge all immune elements that contribute to skin tumorigenesis; moreover, they can serve as immune biomarkers. These immune markers can contribute to the diagnostic improvement, prognosis forecast, therapy monitoring, and even personalized therapeutical approach in skin cancer. Immune processes that sustain tumorigenesis in non-melanoma and melanoma skin cancers are described in the framework of recent data.
Biomarkers in Medicine | 2009
Monica Neagu; Carolina Constantin; Gina Manda; Irina Margaritescu
Melanoma, one of the most aggressive forms of human cancer, has undergone an alarming increase in incidence in recent years. Early detection is a prerequisite for proper diagnosis and therapy orientation. Soluble biomarkers are an important tool for early diagnosis. Markers that are associated with melanocyte functions imply the enzymes involved in melanin synthesis and the melanin-related metabolites. Proteins such as autocrine melanocyte cell growth factor and melanoma metastasis suppressor have gained attention in the biomarkers domain. The antimelanoma immune response elicited in patients can not only provide new biomarkers but important therapeutic approaches in specific treatments. All the molecules generated during the metastasis process, invasion of neighboring tissue, angiogenesis, invading lymphatic/blood vessels and establishing new tumors at a distant site, are targets for biomarker discovery.