Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Oliveira is active.

Publication


Featured researches published by Monica Oliveira.


Physics of Fluids | 2005

Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers

Monica Oliveira; Gareth H. McKinley

The dynamics of elastocapillary thinning in high molecular weight polymer solutions are reexamined using high-speed digital video microscopy. At long times, the evolution of the viscoelastic thread deviates from self-similar exponential decay and the competition of elastic, capillary, and inertial forces leads to the formation of a periodic array of beads connected by axially uniform ligaments. This configuration is itself unstable and successive instabilities propagate from the necks connecting the beads and the ligaments. This iterated process results in the development of multiple generations of beads in agreement with the predictions of Chang, Demekin, and Kalaidin [“Iterated stretching of viscoelastic jets,” Phys. Fluids 11, 1717 (1999)] although experiments yield a different recursion relation between successive generations. At long times, finite molecular extensibility truncates the iterated instability and axial translation of the bead arrays along the interconnecting threads leads to a progressiv...


Biomicrofluidics | 2011

Extensional flow of blood analog solutions in microfluidic devices

P.C. Sousa; F.T. Pinho; Monica Oliveira; M.A. Alves

In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale.


Biomicrofluidics | 2013

Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel

Tomoko Yaginuma; Monica Oliveira; R. Lima; Takuji Ishikawa; Takami Yamaguchi

It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases.


Soft Matter | 2012

Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device

Simon J. Haward; Thomas Joseph Ober; Monica Oliveira; M.A. Alves; Gareth H. McKinley

Wormlike micellar surfactant solutions are encountered in a wide variety of important applications, including enhanced oil recovery and ink-jet printing, in which the fluids are subjected to high extensional strain rates. In this contribution we present an experimental investigation of the flow of a model wormlike micellar solution (cetyl pyridinium chloride and sodium salicylate in deionised water) in a well-defined stagnation point extensional flow field generated within a microfluidic cross-slot device. We use micro-particle image velocimetry (μ-PIV) and full-field birefringence microscopy coupled with macroscopic measurements of the bulk pressure drop to make a quantitative characterization of the fluids rheological response over a wide range of deformation rates. The flow field in the micromachined cross-slot is first characterized for viscous flow of a Newtonian fluid, and μ-PIV measurements show the flow field remains symmetric and stable up to moderately high Reynolds number, Re ≈ 20, and nominal strain rate, nom ≈ 635 s−1. By contrast, in the viscoelastic micellar solution the flow field remains symmetric only for low values of the strain rate such that nom ≤ λM−1, where λM = 2.5 s is the Maxwell relaxation time of the fluid. In this stable flow regime the fluid displays a localized and elongated birefringent strand extending along the outflow streamline from the stagnation point, and estimates of the apparent extensional viscosity can be obtained using the stress-optical rule and from the total pressure drop measured across the cross-slot channel. For moderate deformation rates (nom ≥ λM−1) the flow remains steady, but becomes increasingly asymmetric with increasing flow rate, eventually achieving a steady state of complete anti-symmetry characterized by a dividing streamline and birefringent strand connecting diagonally opposite corners of the cross-slot. Eventually, as the nominal imposed deformation rate is increased further, the asymmetric divided flow becomes time dependent. These purely elastic instabilities are reminiscent of those observed in cross-slot flows of polymer solutions, but seem to be strongly influenced by the effects of shear localization of the micellar fluid within the microchannels and around the re-entrant corners of the cross-slot.


Biomicrofluidics | 2013

Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

Simon J. Haward; Aditya Jaishankar; Monica Oliveira; M.A. Alves; Gareth H. McKinley

We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.


Biomicrofluidics | 2013

Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system

Laura Campo-Deaño; Roel P. A. Dullens; F.T. Pinho; Monica Oliveira

The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.


Chemical Engineering Science | 2001

Gas hold-up and bubble diameters in a gassed oscillatory baffled column

Monica Oliveira; Xiongwei Ni

In this paper attempts are made to address how bubble behaviour in a batch oscillatory baffled column (OBC) contributes to the overall measured enhancement in mass transfer. A CCD camera is used to measure the bubble size distribution and the gas hold-up in the OBC. The experimental results of Sauter mean diameter and gas hold-up are correlated as a function of the power dissipation and superficial gas velocity, in order to allow for comparisons with published correlations for the mass transfer coefficient. In general, an increase in the oscillatory velocity causes an increase in the hold-up and a decrease in the Sauter mean diameter. Furthermore, we are able to show that the changes in the gas hold-up contribute more than the mean bubble size to the control of the mass transfer coefficient.


Biofabrication | 2009

Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

Rui Lima; Monica Oliveira; Takuji Ishikawa; Hirokazu Kaji; Shuji Tanaka; Matsuhiko Nishizawa; Takami Yamaguchi

The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal microPIV/PTV. By using a confocal microPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 microm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit.


Korea-australia Rheology Journal | 2016

A review of hemorheology: Measuring techniques and recent advances

P.C. Sousa; F.T. Pinho; M.A. Alves; Monica Oliveira

Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.


Biorheology | 2013

Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear

P.C. Sousa; J. Carneiro; Raquel V. Vaz; A. Cerejo; F.T. Pinho; M.A. Alves; Monica Oliveira

We investigated experimentally the rheological behavior of whole human blood subjected to large amplitude oscillatory shear under strain control to assess its nonlinear viscoelastic response. In these rheological tests, the shear stress response presented higher harmonic contributions, revealing the nonlinear behavior of human blood that is associated with changes in its internal microstructure. For the rheological conditions investigated, intra-cycle strain-stiffening and intra-cycle shear-thinning behavior of the human blood samples were observed and quantified based on the Lissajous-Bowditch plots. The results demonstrated that the dissipative nature of whole blood is more intense than its elastic component. We also assessed the effect of adding EDTA anticoagulant on the shear viscosity of whole blood subjected to steady shear flow. We found that the use of anticoagulant in appropriate concentrations did not influence the shear viscosity and that blood samples without anticoagulant preserved their rheological characteristics approximately for up to 8 minutes before coagulation became significant.

Collaboration


Dive into the Monica Oliveira's collaboration.

Top Co-Authors

Avatar

M.A. Alves

Faculdade de Engenharia da Universidade do Porto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alves

University of Porto

View shared research outputs
Top Co-Authors

Avatar

Gareth H. McKinley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M. Afonso

Faculdade de Engenharia da Universidade do Porto

View shared research outputs
Researchain Logo
Decentralizing Knowledge